SSブログ

No.358 - 高校数学で理解するガロア理論(5) [科学]

\(\newcommand{\bs}[1]{\boldsymbol{#1}} \newcommand{\mr}[1]{\mathrm{#1}} \newcommand{\br}[1]{\textbf{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\sb}{\subset} \newcommand{\sp}{\supset} \newcommand{\al}{\alpha} \newcommand{\sg}{\sigma}\newcommand{\cd}{\cdots}\)
 
7.可解性の十分条件 
 

第6章では、方程式が可解であれば(=解が四則演算とべき根で表現できれば)ガロア群が可解群であることをみました。第7章ではその逆、つまり、ガロア群が可解群であれば方程式が可解であることを証明します。


7.1 1の原始\(n\)乗根


可解性の十分条件を証明するために、まず、\(1\) の原始\(n\)乗根がべき根で表せることを証明します。このことを前提にした証明を最後で行うからです。念のために「1.1 方程式とその可解性」でのべき根の定義を振り返ると、

 \(\sqrt[n]{\:a\:}\) (\(n=2\) の場合は \(\sqrt{\:a\:}\))

という表記は、

・ \(a\) が正の実数のとき、\(n\)乗して \(a\) になる正の実数を表わす
・ \(a\) が負の実数や複素数の場合は、\(n\)乗して \(a\) になる数のどれかを表わす

のでした。\(\sqrt{2}\) は \(1.4142\cd\) と \(-1.4142\cd\) のどちらかを表わすのではなく、\(1.4142\cd\) のことです。\(\sqrt[3]{2}\) は \(3\)乗して \(2\) になる3つの数のうちの正の実数(\(\fallingdotseq1.26\))を表わします。一方、\(\sqrt{-1\:}\) は\(2\)乗して \(-1\) になる2つの数のうちのどちらかで、その一方を \(i\) と書くと、もう一方が \(-i\) です。

この定義から、方程式 \(x^n-1=0\) の解を \(\sqrt[n]{\:1\:}\) と書くと、それは \(1\) のことです。従って、

\(1\) 以外の「\(n\)乗して \(1\) になる数」がべき根で表現できる

ことを証明しておく必要があります。その証明はガロア理論とは無関係にできます。それが以下です。


原始n乗根はべき根で表現可能:71A)

\(1\) の 原始\(n\)乗根はべき根で表現できる。


[証明]

\(n\) についての数学的帰納法で証明する。\(n=2,\:3\) のときにべき根で表現できるのは根の公式で明らかである。また、原始4乗根は \(\pm i\) なので、\(n\leq4\) のとき題意は成り立つ。そこで、\(n\) 未満のときにべき根で表現できると仮定し、\(n\) のときにもべき根で表現できることを証明する。

\(n\) が合成数のときと素数のときに分ける。まず \(n\) が合成数なら、
 \(n=s\cdot t\)
と表現できる。
 \(1\) の原始\(s\)乗根を \(\zeta\)
 \(1\) の原始\(t\)乗根を \(\eta\)
とし、\(X=x^{s}\) とおく。方程式 \(X^{t}-1=0\) の \(t\)個の解は \(\eta^k\:\:(0\leq k\leq t-1)\) と表わされる(63B)から、\(x^n-1\) は、
\(\begin{eqnarray}
&&\:\:x^n-1&=x^{st}-1=X^{t}-1\\
&&&=\displaystyle\prod_{k=0}^{t-1}(X-\eta^k)\\
&&&=\displaystyle\prod_{k=0}^{t-1}(x^{s}-\eta^k)\\
\end{eqnarray}\)
と因数分解できる。従って、方程式 \(x^n-1=0\) の解は、
 \(x^{s}=\eta^k\:\:\:(0\leq k\leq t-1)\)
の解である。これを解くと、
 \(x=\sqrt[s]{\eta^k}\cdot\zeta^j\:\:\:(0\leq j\leq s-1,\:\:0\leq k\leq t-1)\)
である(\(k=0\) のときは根号の規則に従って \(\sqrt[s]{1}=1\))。帰納法の仮定により、\(\zeta,\:\eta\) はべき根で表現できるから、上式により \(1\) の \(n\) 乗根はべき根で表現できる。従って原始\(n\)乗根もべき根で表現できる。


以降は \(n\) が素数の場合を証明する。\(n\) を \(p\)(= 素数)と表記する。以下では数式を見やすくするため \(p=5\) の場合を例示するが、証明の過程は一般性を失わない論理で進める。

位数 \(p-1\) の2つの巡回群、\((\bs{Z}/p\bs{Z})^{*}\) と \(\bs{Z}/(p-1)\bs{Z}\) の性質を利用する。\(p=5\) の場合は、位数 \(4\) の既約剰余類群 \((\bs{Z}/5\bs{Z})^{*}\) と、剰余群 \(\bs{Z}/4\bs{Z}\) である。

\(p\) が素数のとき、既約剰余類群 \((\bs{Z}/p\bs{Z})^{*}\) は生成元をもつ(25D)。\((\bs{Z}/5\bs{Z})^{*}\) の生成元の一つは \(2\) である(もう一つは \(3\))。生成元を \(2\) とすると、
\(\begin{eqnarray}
&&\:\:(\bs{Z}/5\bs{Z})^{*}&=\{2,\:2^2,\:2^3,\:2^4\}\\
&&&=\{2,\:4,\:3,\:1\}\\
\end{eqnarray}\)
の巡回群となる。演算は乗算である。一方、\(\bs{Z}/4\bs{Z}\) は、演算が加算、生成元が \(1\)(または \(3\))の巡回群で、
\(\begin{eqnarray}
&&\:\:\bs{Z}/4\bs{Z}&=\{1,\:1+1,\:1+1+1,\:1+1+1+1\}\\
&&&=\{1,\:2,\:3,\:0\}\\
\end{eqnarray}\)
である。ここで、2つの変数 \(x,\:y\) をもつ関数を、

\(f(x,y)=y^2x+y^4x^2+y^3x^3+y\)

とおく。この関数は、4つある項の \(x,\:y\) の指数について、
 \(y\) の指数は \([\:2,\:4,\:3,\:1\:]\) : \((\bs{Z}/5\bs{Z})^{*}\) の巡回パターン
 \(x\) の指数は \([\:1,\:2,\:3,\:0\:]\) : \(\bs{Z}/4\bs{Z}\) の巡回パターン
となるようにしてある。

次に、2つの数 \(a,\:b\) を、
\(\begin{eqnarray}
&&\:\:a^5&=1\:(a\neq1)\\
&&\:\:b^4&=1\\
\end{eqnarray}\)
であるような数とする。\(a\) は \(1\) の原始5乗根でもよいし、その任意の累乗でもよい。とにかく \(a^5=1\:(a\neq1)\) を満たす数である。このとき、
 \(a^5-1=0\)
 \((a-1)(a^4+a^3+a^2+a+1)=0\)
なので、
 \(a^4+a^3+a^2+a+1=0\) ないしは
 \(a^4+a^3+a^2+a=-1\)
が成り立つ。\(b\) も \(1\) の原始4乗根か、その任意の累乗であるが、\(b=1\) であってもよい。

そうすると \(f(b,a)\) は、
 \(f(b,a)=a^2b+a^4b^2+a^3b^3+a\)
   \(a\) の指数は \([\:2,\:4,\:3,\:1\:]\)
   \(b\) の指数は \([\:1,\:2,\:3,\:0\:]\)
である。

次に \(f(b,a^2)\) を計算すると、
\(\begin{eqnarray}
&&\:\:f(b,a^2)&=a^4b+a^8b^2+a^6b^3+a^2\\
&&&=a^4+a^3b+a^1b^2+a^2b^3\\
\end{eqnarray}\)
   \(a\) の指数は \([\:4,\:3,\:1,\:2\:]\)
   \(b\) の指数は \([\:1,\:2,\:3,\:0\:]\)
となる。

\(f(b,a^2)\) を \(f(b,a)\) と比べると、\(a\) の指数が \(1\) ステップだけ巡回している。ということは、\(b\) の指数も \([\:2,\:3,\:0,\:1\:]\) と \(1\) ステップだけ巡回させれば、\(a\) の指数と \(b\) の指数が同期することになり、\(f(b,a^2)\) の式は \(f(b,a)\) と同じものになる。同期させるには \(f(b,a^2)\) に \(b\) を掛ければよい。従って、
 \(bf(b,a^2)=f(b,a)\)
である。

全く同様にして、
\(\begin{eqnarray}
&&\:\:b^2f(b,a^4)&=f(b,a)\\
&&\:\:b^3f(b,a^8)&=b^3f(b,a^3)\\
&&&=f(b,a)\\
\end{eqnarray}\)
となる。まとめると、
\(\begin{eqnarray}
&&\:\:bf(b,a^2)&=f(b,a)\\
&&\:\:b^2f(b,a^4)&=f(b,a)\\
&&\:\:b^3f(b,a^3)&=f(b,a)\\
\end{eqnarray}\)
である。\(b^4=1\) だから、各両辺を \(4\)乗すると、
 \(f(b,a^2)^4=f(b,a)^4\)
 \(f(b,a^4)^4=f(b,a)^4\)
 \(f(b,a^3)^4=f(b,a)^4\)
の式を得る。


本題から少々はずれるが、この仕組みは、\(a\) の指数が「\(2\) の乗算の巡回群」であるため、
 \(a^k\:\rightarrow\:a^{2k}=(a^k)^2\)
と巡回し、\(b\) の指数は「\(1\) の足し算の巡回群」であるため、
 \(b^k\:\rightarrow\:b^{k+1}=b\cdot b^k\)
と巡回することを利用したものである。

なお、\((\bs{Z}/5\bs{Z})^{*}\) の生成元として \(2\) を選んだが、一般の \((\bs{Z}/p\bs{Z})^{*}\) では \(2\) が生成元とは限らない(25D)。その場合は任意の生成元を選んでよい。例えば \((\bs{Z}/5\bs{Z})^{*}\) の生成元として \(3\) を選ぶと
 \([\:3,\:3^2,\:3^3,\:3^4\:]=[\:3,\:4,\:2,\:1\:]\)
と巡回する。従って \(f(x,y)\) を、
 \(f(x,y)=y^3x+y^4x^2+y^2x^3+y\)
と定義すると、\(y,\:a\) の指数は「\(3\) の乗算の巡回群」だから、
 \(a^k\:\rightarrow\:a^{3k}=(a^k)^3\)
と巡回する(\(x,\:b\) については同じ)。つまり、
\(\begin{eqnarray} &&\:\:bf(b,a^3)&=f(b,a)\\ &&\:\:b^2f(b,a^4)&=f(b,a)\\ &&\:\:b^3f(b,a^2)&=f(b,a)\\ \end{eqnarray}\)
となり、
 \(f(b,a^3)=f(b,a)^4\)
 \(f(b,a^4)=f(b,a)^4\)
 \(f(b,a^2)=f(b,a)^4\)
となり、同じ結果を得る。


本題に戻って、次に \(f(b,a)^4\) を展開する。

 \(f(b,a)^4=(a^2b+a^4b^2+a^3b^3+a)^4\)
 \((\br{A})\)

であるが、このまま展開したのでは \(p=5\) のときに固有のものになり、一般性を失う。そこで、上式を展開して整理した形を、

 \(f(b,a)^4=h_1(b)a^2+h_2(b)a^4+h_3(b)a^3+h_0(b)a\)
 \((\br{B})\)

とする。\(a^2,\:a^4,\:a^3,\:a\) の係数となっている \(h_i(b)\:(i=1,2,3,0)\) は \(b\) の多項式である。この展開形の決め方は次のように行う。

① \((\br{A})\) 式の次数は最大 \(a^{16}\) であるが、\(a^5=1\) の関係を利用して最大次数が \(a^4\) になるように「次数下げ」を行う。

② そうすると、\(a\) を含まない \(b\) だけの項が出てくる。そこで、
 \(1=-(a^4+a^3+a^2+a)\)
の関係を利用し、\(b\) だけの項に \(-(a^4+a^3+a^2+a)\) を掛けて「次数上げ」を行う。

③ 以上の結果を、\(a^2,\:a^4,\:a^3,\:a\) ごとに整理したものを \((\br{B})\) とする。

\((\br{B})\) 式においては、
 \(a\) の指数 \(:\:[\:2,\:4,\:3,\:1\:]\)
 \(h_i(b)\) の添字 \(:\:[\:1,\:2,\:3,\:0\:]\)
であることに注意する。

次に \(f(b,a^2)^4\) を計算する。これは \((\br{B})\) 式において \(a\) を \(a^2\) に置き換えればよいから、
\(\begin{eqnarray}
&&\:\:f(b,a^2)^4&=h_1(b)a^4+h_2(b)a^8+h_3(b)a^6+h_0(b)a^2\\
&&&=h_1(b)a^4+h_2(b)a^3+h_3(b)a+h_0(b)a^2\\
\end{eqnarray}\)
   \(a\) の指数 \(:\:[\:4,\:3,\:1,\:2\:]\)
   \(h_i(b)\) の添字 \(:\:[\:1,\:2,\:3,\:0\:]\)
となるが、これは \(f(b,a)^4\) において、
   \(a\) の指数 \(:\:[\:2,\:4,\:3,\:1\:]\)
   \(h_i(b)\) の添字 \(:\:[\:0,\:1,\:2,\:3\:]\)
としたものと同じである。つまり、
 \(f(b,a^2)^4=h_0(b)a^2+h_1(b)a^4+h_2(b)a^3+h_3(b)a\)
である。同様に、
 \(f(b,a^4)^4=h_3(b)a^2+h_0(b)a^4+h_1(b)a^3+h_2(b)a\)
   \(h_i(b)\) の添字 \(:\:[\:3,\:0,\:1,\:2\:]\)
 \(f(b,a^3)^4=h_2(b)a^2+h_3(b)a^4+h_0(b)a^3+h_1(b)a\)
   \(h_i(b)\) の添字 \(:\:[\:2,\:3,\:0,\:1\:]\)
である。

従って、\(f(b,a^i)^4\:\:(i=1,2,4,3)\) において、\(a^j\:(j=2,4,3,1)\) の係数は \(h_k(b)\:(k=1,2,3,0)\) の全てを巡回する。つまり、\(f(b,a^i)^4\:\:(i=1,2,4,3)\) の全部を足すと、\(a^j\:(j=2,4,3,1)\) の係数は全て同じになる。その計算をすると、

 \(\displaystyle\sum_{i=1}^{4}f(b,a^i)^4\)
\(\begin{eqnarray}
&&\:\: =&(h_1(b)+h_2(b)+h_3(b)+h_0(b))\\
&&&\cdot(a^2+a^4+a^3+a)\\
\end{eqnarray}\)

となる。上式の左辺については、
\(\begin{eqnarray}
&&\:\:f(b,a^2)^4&=f(b,a)^4\\
&&\:\:f(b,a^4)^4&=f(b,a)^4\\
&&\:\:f(b,a^3)^4&=f(b,a)^4\\
\end{eqnarray}\)
だったので、左辺は \(4f(b,a)^4\) に等しい。また \(a^5-1=0\) なので \(a^2+a^4+a^3+a=-1\) である。従って、

 \(4f(b,a)^4=-(h_1(b)+h_2(b)+h_3(b)+h_0(b))\)

である。ここで、
 \(g(b)=-\dfrac{1}{4}\:(h_1(b)+h_2(b)+h_3(b)+h_0(b))\)
と定義すると、

 \(f(b,a)^4\)\(=g(b)\)
 \(f(b,a)\)\(=\sqrt[4]{g(b)}\) 
\((\br{C})\)

を得る。\((\br{C})\) 式における \(\sqrt[4]{g(b)}\) とは「\(4\)乗すると \(g(b)\) になる数」という意味である。従って、実際には \(4\)次方程式の \(4\)つの解のどれかを表している。

なお、\(g(b)\) を具体的に計算すると、計算過程は省くが、
 \(g(b)=-16b^3+14b^2+4b-1\)
 \((\br{D})\)
となる。この表現は \(p=5\) のときのもので、一般論につながるものではない。


今までの計算をまとめると、

\(\begin{eqnarray}
&&\:\:a^5=1\:(a\neq1)&\\
&&\:\:b^4=1&\\
\end{eqnarray}\)

\(\begin{eqnarray}
&&\:\:f(b,a)&=a^2b+a^4b^2+a^3b^3+a\\
&&\:\:f(b,a)^4&=h_1(b)a^2+h_2(b)a^4+h_3(b)a^3+h_0(b)a\\
&&\:\:g(b)&=-\dfrac{1}{4}(h_1(b)+h_2(b)+h_3(b)+h_0(b))\\
&&\:\:f(b,a)&=\sqrt[4]{g(b)}\\
\end{eqnarray}\)

である。この過程で、\(a,\:b\) については \(a^5=1\:(a\neq1),\:b^4=1\) という条件しか使っていない。従って、この条件が満たせれば \(a,\:b\) は任意である。そこで \(1\) の原始5乗根を \(\zeta\) とし、\(1\) の原始4乗根を \(\omega\) として、
 \(a=\zeta\)
 \(b=\omega^j\:\:(j=1,2,3,4)\)
とおく。\(b\) は \(1\) にもなりうる(\(\omega^4=1\))。なお、\(\omega\) は普通 \(1\) の原始3乗根の記号であるが、ここでは原始4乗根として使う。

すると、

 \(f(\omega^j,\zeta)=\sqrt[4]{g(\omega^j)}\:\:(j=1,2,3,4)\)
 \((\br{E})\)

という、4つの式が得られる。これは、
 \(\zeta^2,\:\:\zeta^4,\:\:\zeta^3,\:\:\zeta\)
を4つの未知数とする連立1次方程式である。帰納法の仮定により \(\omega\) はべき根で表されているから、方程式を解いて \(\zeta\) が \(\omega\) のべき根(と四則演算)で表されば、証明が完成することになる。


\((\br{E})\) の連立方程式を具体的に書くと、

 \(\zeta^2+\omega^j\zeta^4+(\omega^j)^2\zeta^3+(\omega^j)^3\zeta=\sqrt[4]{g(\omega^j)}\)
   \((j=1,2,3,4)\)

であり、全てを陽に書くと、

\(\left\{
\begin{array}{l}
\begin{eqnarray}
&&\zeta^2+\omega\:\:\zeta^4+(\omega\:\:)^2\zeta^3+(\omega\:\:)^3\zeta&=\sqrt[4]{g(\omega)}& \br{①}&\\
&&\zeta^2+\omega^2\zeta^4+(\omega^2)^2\zeta^3+(\omega^2)^3\zeta&=\sqrt[4]{g(\omega^2)}& \br{②}&\\
&&\zeta^2+\omega^3\zeta^4+(\omega^3)^2\zeta^3+(\omega^3)^3\zeta&=\sqrt[4]{g(\omega^3)}& \br{③}&\\
&&\zeta^2+\omega^4\zeta^4+(\omega^4)^2\zeta^3+(\omega^4)^3\zeta&=\sqrt[4]{g(\omega^4)}& \br{④}&\\
\end{eqnarray}
\end{array}\right.\)

となる。この連立方程式を解くため、\(\zeta\) の項だけを残し、他の未知数である \(\zeta^2,\:\zeta^4,\:\zeta^3\) の項を消去することを考える。そのために、

 \(A\::\:\br{①}\times\omega\:+\:\br{②}\times\omega^2\:+\:\br{③}\times\omega^3\:+\:\br{④}\times\omega^4\)

とおくと、

 \(A\) の左辺 \(=\)
  \(\omega\:\:\zeta^2+(\omega\:\:)^2\zeta^4+(\omega\:\:)^3\zeta^3+(\omega\:\:)^4\zeta+\)
  \(\omega^2\zeta^2+(\omega^2)^2\zeta^4+(\omega^2)^3\zeta^3+(\omega^2)^4\zeta+\)
  \(\omega^3\zeta^2+(\omega^3)^2\zeta^4+(\omega^3)^3\zeta^3+(\omega^3)^4\zeta+\)
  \(\omega^4\zeta^2+(\omega^4)^2\zeta^4+(\omega^4)^3\zeta^3+(\omega^4)^4\zeta\)

となる。\(\zeta\) の4つの項は、係数が \((\omega^j)^4=(\omega^4)^j=1\) であり、
 \(\zeta\) の項の合計 \(=\:4\zeta\)
である。

\(\zeta^2,\:\zeta^4,\:\zeta^3\) の項の係数は、
 \(\omega^j+\omega^{2j}+\omega^{3j}+\omega^{4j}\:\:(j=1,2,3)\)
である。\(\omega^4=1\) なので、
 \(\omega^j+\omega^{2j}+\omega^{3j}+1\:\:(j=1,2,3)\)
の形をしている。\(\omega\) は \(1\) の原始4乗根であり、\(x^4-1=0\) の根である。\(x^4-1\) は、
 \(x^4-1=(x-1)(x^3+x^2+x+1)\)
と因数分解されるから、\(\omega,\:\omega^2,\:\omega^3\) は方程式
 \(x^3+x^2+x+1=0\)
の3つの根である。つまり、
 \(x^3+x^2+x+1=(x-\omega)(x-\omega^2)(x-\omega^3)\)
と因数分解される。この式に \(x=\omega^j\:(j=1,2,3)\) を代入すると、
 \((\omega^j)^3+(\omega^j)^2+\omega^j+1\)
\(\begin{eqnarray}
&&\:\: &=\omega^{3j}+\omega^{2j}+\omega^j+1\\
&&&=(\omega^j-\omega)(\omega^j-\omega^2)(\omega^j-\omega^3)\\
&&&=0\:\:(j=1,2,3)\\
\end{eqnarray}\)
となる。つまり、\(\zeta^2,\:\zeta^4,\:\zeta^3\) の項の係数、\(\omega^j+\omega^{2j}+\omega^{3j}+1\) は全て \(0\) ということである。以上をまとめると、\(A\) の左辺は \(\zeta\) の項だけが残り、

 \(A\) の左辺 \(=\:4\zeta\)

である。一方、\(A\) 式の右辺は、
 \(A\) の右辺 \(=\:\displaystyle\sum_{j=1}^{4}\omega^j\sqrt[4]{g(\omega^j)}\)
である。従って、
 \(4\zeta=\displaystyle\sum_{j=1}^{4}\omega^j\sqrt[4]{g(\omega^j)}\)
 \(\zeta=\dfrac{1}{4}\displaystyle\sum_{j=1}^{4}\omega^j\sqrt[4]{g(\omega^j)}\)
 \((\br{F})\)
となり、\(\zeta\) が \(\omega\) の多項式のべき根として求まった。

\((\br{F})\) 式における \(\sqrt[4]{g(\omega^j)}\) とは「\(4\)乗すると \(g(\omega^j)\) になる数」という意味であり、\(4\)次方程式の\(4\)つの解のどれかである。従って、実際に \(\omega\) に数を入れて(この場合は \(1\) の原始4乗根だから \(i\) か \(-i\))計算するときには、\(\zeta^5=1\) になるように \((\br{F})\) 式の \(4\)つの項のそれぞれについて、\(4\)つの解のどれかを選択する必要がある。しかしそうであっても、\(\zeta\) が \(\omega\) の多項式のべき根と四則演算で表現できるということは変わらない。

これまでの論理展開では、\(p=5\) であることの特殊性は何も使っていない。唯一、使ったのは、\(p\) が素数であり、そのときに \((\bs{Z}/p\bs{Z})^{*}\) に生成元がある(25D)ということである。

従って、\(\zeta\) が \(1\) の原始\(p\)乗根であり、\(\omega\) が \(1\) の原始\((p-1)\)乗根であっても \((\br{F})\) 式は、\(4\) を \((p-1)\) に置き換えれば成り立つ。

帰納法の仮定により、\(1\) の原始\((p-1)\)乗根 \(\omega\) はべき根で表される。従って \((\br{F})\) 式から、\(1\) の原始\(p\)乗根 である \(\zeta\) もべき根で表される。[証明終]


ためしに \((\br{F})\) 式を使って、\(1\) の原始5乗根、\(\zeta\) を計算してみます。\(\omega\) は \(1\) の原始4乗根(の一つ)なので \(\omega=i\)(虚数単位)とすると、\((\br{D})\) 式も含めて、
\(\begin{eqnarray}
&&\:\:g(b)&=-16b^3+14b^2+4b-1 (\br{D})\\
&&\:\:b&=\omega^j\:\:(j=1,2,3,4)\\
&&&=\:\{\:i,\:-1,\:-i,\:1\:\}\\
&&\:\:g(\omega)&=-15+20i\\
&&\:\:g(\omega^2)&=25\\
&&\:\:g(\omega^3)&=-15-20i\\
&&\:\:g(\omega^4)&=1\\
\end{eqnarray}\)
となり、これらを \((\br{F})\) 式に代入すると、

 \(\zeta=\dfrac{1}{4}(\sqrt[4]{1}-\sqrt[4]{25}+i(\sqrt[4]{-15+20i}-\sqrt[4]{-15-20i}))\)

となります。\(\sqrt[4]{\cd}\) は「\(4\)乗して \(\cd\) になる数」の意味です。この式を、
 \(4\zeta=r+is\)
\(\begin{eqnarray}
&&\:\: r&=\sqrt[4]{1}-\sqrt[4]{25}\\
&&\:\: s&=\sqrt[4]{-15+20i}-\sqrt[4]{15-20i}\\
\end{eqnarray}\)
と表すことにします。そして \(\sqrt[4]{\cd}\) を \(\sqrt{\cd}\) に変換するために2乗すると、
\(\left\{
\begin{array}{l}
\begin{eqnarray}
&&r^2=\pm6\pm2\sqrt{5}&\\
&&s^2=\pm10\pm2\sqrt{5}&\\
\end{eqnarray}
\end{array}\right.\)
と計算できます。但し \(r^2+s^2=4\) の条件があるので、
\(\left\{
\begin{array}{l}
\begin{eqnarray}
&&r^2=6\pm2\sqrt{5}&\\
&&s^2=10\pm2\sqrt{5}&\\
\end{eqnarray}
\end{array}\right.\)
となります(複合異順)。ここから \(r,\:s\) を求めると、\(r\) の方は2重根号をはずすことができて、
\(\left\{
\begin{array}{l}
\begin{eqnarray}
&&r=\pm(1+\sqrt{5}),\:\:s=\pm\sqrt{10-2\sqrt{5}}&\\
&&r=\pm(1-\sqrt{5}),\:\:s=\pm\sqrt{10+2\sqrt{5}}&\\
\end{eqnarray}
\end{array}\right.\)
の合計8つの解が求まります。このうちの4つは方程式 \(x^5-1=0\) の解 \((=\zeta)\) で、残りの4つは方程式 \(x^5+1=0\) の解 \((=-\zeta)\) です。\(\zeta\) を表記すると、

\(\left\{
\begin{array}{l}
\begin{eqnarray}
&&\zeta=\dfrac{1}{4}\left(-1+\sqrt{5}\pm i\sqrt{10+2\sqrt{5}}\right)&\\
&&\zeta=\dfrac{1}{4}\left(-1-\sqrt{5}\pm i\sqrt{10-2\sqrt{5}}\right)&\\
\end{eqnarray}
\end{array}\right.\)

の4つとなり、\(1\) の原始5乗根が求まりました。一般的な原始5乗根の計算方法とは違いますが、\((\br{F})\) 式によっても原始5乗根が求まることが確認できました。


7.2 べき根拡大の十分条件のため補題


ここでは「7.3 べき根拡大の十分条件」を証明するための補題を2つ証明します。以下に出てくる多項式 \(g(x)\) は、方程式を解くために考えられた「ラグランジュの分解式」と呼ばれるものです。分解式はレゾルベント(resolvent)とも言います。

補題(1)
べき根拡大の十分条件のため補題1:72A)

\(\bs{L}\) を \(\bs{K}\) のガロア拡大とし、\(\mr{Gal}(\bs{L}/\bs{K})\) を \(\sg\) で生成される位数 \(n\) の巡回群とする。式 \(g(x)\) を、

\(g(x)\)\(\overset{\text{ }}{=}\)\(x+a_1\sg(x)+a_2\sg^2(x)+\:\cd\:+a_{n-1}\sg^{n-1}(x)=0\)
\((a_i\in\bs{L},\:1\leq i\leq n-1)\)

と定義する。このとき、\(\bs{L}\) の全ての元 \(x\) について、\(g(x)=0\) となるような \(\bs{L}\) の元、\(a_1,\:a_2,\:\cd\:,a_{n-1}\) は存在しない。


[証明]

\(\bs{L}\) が原始元 \(\theta\) によって \(\bs{L}=\bs{K}(\theta)\) と表されているとし(32B)、\(\theta\) の \(\bs{K}\) 上の最小多項式を \(f(x)\) とする。最小多項式は既約多項式の定理(31I)により \(f(x)\) は既約多項式である。そうすると、\(\theta,\:\sg^i(\theta)\:(1\leq i\leq n-1)\) の \(n\)個は \(f(x)=0\) の解であり、既約多項式の定理331G)によって \(n\)個の解は全て異なる。つまり、
 \(\theta-\sg^i(\theta)\neq0\:(1\leq i\leq n-1)\)
である。このことを踏まえて背理法で証明する。\(\bs{L}\) の任意の元 \(x\) について、

\(g(x)=x+a_1\sg(x)+a_2\sg^2(x)+\:\cd\:+a_{n-1}\sg^{n-1}(x)=0\)
 \((\br{A})\)

となるような \(\bs{L}\) の元 \(a_1,\:a_2,\:\cd\:,a_{n-1}\) が存在したとする。この \(g(x)=0\) の式から \(\sg^{n-1}(x)\) の項を消去することを考える。そのためにまず \(g(\theta x)\) を計算すると、

\(g(\theta x)\)\(\overset{\text{ }}{=}\)\(\theta x+\)\(a_1\sg(\theta x)+\)\(a_2\sg^2(\theta x)+\)\(\:\cd\:+\)\(a_{n-1}\sg^{n-1}(\theta x)\)
\(\overset{\text{ }}{=}\)\(\theta x+\)\(a_1\sg(\theta)\sg(x)+\)\(a_2\sg^2(\theta)\sg^2(x)+\)\(\:\cd\:+\)\(a_{n-1}\sg^{n-1}(\theta)\sg^{n-1}(x)\)
\(\overset{\text{ }}{=}\)\(0\)

となる。この式から \(\sg^{n-1}(x)\) の項を消去するには、この式の \(\sg^{n-1}(x)\)の係数が \(a_{n-1}\sg^{n-1}(\theta)\) であり、また \(g(x)\) の \(\sg^{n-1}(x)\) の項の係数が \(a_{n-1}\) なので、
 \(\sg^{n-1}(\theta)g(x)=0\)
の式を作って両辺から引けばよい。その計算をすると、

\(g(\theta x)-\sg^{n-1}(\theta)g(x)\)
 \(\overset{\text{ }}{=}\)\((\theta-\sg^{n-1}(\theta))x+\)\((\sg(\theta)-\sg^{n-1}(\theta))a_1\sg(x)+\)\((\sg^2(\theta)-\sg^{n-1}(\theta))a_2\sg(x)^2+\)\(\:\cd\:+\)\((\sg^{n-2}(\theta)-\sg^{n-1}(\theta))a_{n-2}\sg(x)^{n-2}\)
\(\overset{\text{ }}{=}\)\(0\)

となる。ここで、\(x\) の係数である \((\theta-\sg^{n-1}(\theta))\) は、証明の最初に書いたように \(0\) ではない。そこで、全体を \((\theta-\sg^{n-1}(\theta))\) で割ると、

\(x+b_1\sg(x)+b_2\sg(x)^2+\:\cd\:+b_{n-2}\sg(x)^{n-2}=0\)
 \((\br{B})\)

の形になる。ここで \(b_i\) は、
 \(b_i=\dfrac{\sg^i(\theta)-\sg^{n-1}(\theta)}{\theta-\sg^{n-1}(\theta)}a_i\)
である。\((\br{B})\) 式は、基本的に \((\br{A})\) 式と同じで、\((\br{A})\) 式から \(\sg(x)^{n-1}\) の項を消去した形であり、\(x\) の最大次数の項は \(\sg(x)^{n-2}\) になっている。以上の、\((\br{A})\) から \((\br{B})\) への変換は繰り返し行えるから、\(n-2\) 回の変換を繰り返すと、

 \(x+c_1\sg(x)=0\)

の形が得られる。この式にもう一度、\(n-1\) 回目の変換をすると、

\(\theta x+c_1\sg(\theta x)-\sg(\theta)(x+c_1\sg(x))=0\) 
\(\theta x+c_1\sg(\theta)\sg(x)-\sg(\theta)x+c_1\sg(\theta)\sg(x)=0\) 
\(\theta x-\sg(\theta)x=0\) 
\((\theta-\sg(\theta))x=0\) 
\(x=0\)

となる。\(x\) は \(\bs{L}\) の任意の元だったから、\(\bs{L}\) のすべての元は \(0\) となってしまい、矛盾が生じた。従って背理法の仮定は誤りであり、\(\bs{L}\) の全ての元 \(x\) について、
\(x+a_1\sg(x)+a_2\sg^2(x)+\:\cd\:+a_{n-1}\sg^{n-1}(x)=0\)
となるような \(\bs{L}\) の元、\(a_1,\:a_2,\:\cd\:,a_{n-1}\) は存在しない。[証明終]

補題(2)
べき根拡大の十分条件のため補題2:72B)

\(\zeta\) を \(1\) の原始\(n\)乗根とし、\(\zeta\)を含む代数体を \(\bs{K}\) とする。\(\bs{K}\) のガロア拡大体を \(\bs{L}\) とし、\(\mr{Gal}(\bs{L}/\bs{K})\) は \(\sg\) で生成される位数 \(n\) の巡回群とする(= \(\bs{L}/\bs{K}\) が巡回拡大)。また \(f(x)\) を \(\bs{K}\) 上の \(n\)次既約多項式とし、\(\bs{L}\) が方程式 \(f(x)=0\) の解 \(\theta\) を用いて、\(\bs{L}=\bs{K}(\theta)\) と表されているものとする。このとき、

 \(g(x)=x+\zeta^{n-1}\sg(x)+\zeta^{n-2}\sg^2(x)+\cd+\zeta\sg^{n-1}(x)\)

とおくと、\(g(\theta),\:g(\theta^2),\:\cd\:,g(\theta^{n-1})\) のうち少なくとも一つは \(0\) ではない。


[証明]

\(g(x)\) の形は、べき根拡大の十分条件のため補題172A)で、
 \(a_i=\zeta^{n-i}\:(1\leq i\leq n-1)\)
と置いたものである。\(\zeta\) は \(\bs{K}\) の元 = \(\bs{L}\) の元だから、補題(1)により \(\bs{L}\) の任意の元 \(x\) について \(g(x)=0\) となることはない。

この \(g(x)\) は次のような性質をもっている。まず \(\bs{K}\) の任意の元を \(a\) とすると、\(\mr{Gal}(\bs{L}/\bs{K})\) の 元 \(\sg\) は \(a\) を不動にするから、
 \(\sg^i(a)=a\)
である。従って、\(g(a)\) を計算すると、
 \(g(a)=ag(1)\)
となる。また、\(\bs{K}\) の任意の元を \(a\)、\(\bs{L}\) の任意の元を \(x\) とすると、
 \(\sg^i(ax)=\sg^i(a)\sg^i(x)=a\sg^i(x)\)
なので、
 \(g(ax)=ag(x)\)
である。さらに \(\bs{L}\) の任意の2つの元を \(x,\:y\) とすると、
 \(\sg^i(x+y)=\sg^i(x)+\sg^i(y)\)
なので、
 \(g(x+y)=g(x)+g(y)\)
である。

\(\bs{L}\) は、\(\bs{K}\) 上の既約多項式 \(f(x)\) を用いた方程式 \(f(x)=0\) の解 \(\theta\) の単拡大体 \(\bs{K}(\theta)\) だから、単拡大の体の定理(32C)により、\(\bs{L}\) の任意の元 \(x\) は、

 \(x=b_0+b_1\theta+b_2\theta^2+\cd+b_{n-1}\theta^{n-1}\:(b^i\in\bs{K})\)

と表せる。\(g(x)\) の式にこの \(x\) を代入すると、
\(\begin{eqnarray}
&&\:\:g(x)&=g(b_0+b_1\theta+b_2\theta^2+\cd+b_{n-1}\theta^{n-1})\\
&&&=g(b_0)+g(b_1\theta)+g(b_2\theta^2)+\cd+g(b_{n-1}\theta^{n-1})\\
&&&=b_0g(1)+b_1g(\theta)+b_2g(\theta^2)+\cd+b_{n-1}g(\theta^{n-1})\\
\end{eqnarray}\)

となる。ここで、
 \(g(1)=1+\zeta^{n-1}+\zeta^{n-2}+\cd+\zeta\)
だが、\(g(1)(1-\zeta)=\zeta^n-1=0\) なので \(g(1)=0\) である。従って、\(g(\theta),\:g(\theta^2),\:\cd\:,g(\theta^{n-1})\) の全てが \(0\) だと、\(\bs{L}\) の全ての元 \(x\) について \(g(x)=0\) となり、矛盾が生じる。ゆえに、\(g(\theta),\:g(\theta^2),\:\cd\:,g(\theta^{n-1})\) のうち、少なくとも一つは \(0\) ではない。[証明終]


7.3 べき根拡大の十分条件


補題(1)と補題(2)を使って、体の拡大がべき根拡大になるための十分条件を証明します。


べき根拡大の十分条件:73A)

1の原始\(n\)乗根を \(\zeta\) とし、代数体 \(\bs{\bs{K}}\) には \(\bs{\zeta}\) が含まれるとする。\(\bs{L}/\bs{K}\) をガロア拡大とし、\(\mr{Gal}(\bs{L}/\bs{K})\) が巡回群とする(= \(\bs{L}/\bs{K}\) が巡回拡大)。拡大次数は \([\bs{L}:\bs{K}]=n\) とする。

このとき、\(\bs{L}\) は \(\bs{K}\) のべき根拡大である。


[証明]

\(\mr{Gal}(\bs{L}/\bs{K})\) は位数 \(n\) の巡回群なので、生成元を \(\sg\) とし、

 \(\mr{Gal}(\bs{L}/\bs{K})=\{e,\:\sg,\:\sg^2,\:\cd\:,\sg^{n-1}\}\)

とする。\(\bs{L}\) の 元 \(c\) に対して、

\(\al=c+\zeta^{n-1}\sg(c)+\zeta^{n-2}\sg^2(c)+\:\cd+\zeta^2\sg^{n-2}(c)+\zeta\sg^{n-1}(c)\)

と定める。このとき \(\al\neq0\) となるように \(c\) を選べる。なぜなら、もし \(\al\neq0\) となる \(c\) が選べないとすると、\(\bs{L}\) の全ての元 \(x\) について、

 \(x+\zeta^{n-1}\sg(x)+\zeta^{n-2}\sg^2(x)+\:\cd\:+\zeta\sg^{n-1}(x)=0\)

となるはずだが、これはべき根拡大の十分条件のため補題172A)、つまり、

 \(\bs{L}\) の全ての元 \(x\) について、
  \(x+a_1\sg(x)+a_2\sg^2(x)+\:\cd\:+a_{n-1}\sg^{n-1}(x)=0\)
 となるような \(\bs{L}\) の元、\(a_1,\:a_2,\:\cd\:,a_{n-1}\) は存在しない

において、\(a_1=\zeta^{n-1},\:a_2=\zeta^{n-2},\:\cd\:,a_{n-1}=\zeta\) と置いたことに相当し、そのような \(a_i\:(1\leq i\leq n-1)\) は存在しないとする補題1の結論に反するからである。またべき根拡大の十分条件のため補題272B)では、\(c\) の選び方の例が示されている。そこで、\(\al\neq0\) となるように \(c\) を選んだとする。

\(\sg\)は \(\bs{K}\) の元である \(\zeta\) を不変にするので、
 \(\sg(\zeta^{n-i}\sg^i(c))=\zeta^{n-i}\sg^{i+1}(c)\)
である。これを用いて \(\sg(\al)\) を計算すると、

\(\sg(\al)\)
 \(=\sg(c)+\zeta^{n-1}\sg^2(c)+\zeta^{n-2}\sg^3(c)+\:\cd+\zeta^2\sg^{n-1}(c)+\zeta\sg^n(c)\)
 \(=\zeta^n\sg(c)+\zeta^{n-1}\sg^2(c)+\zeta^{n-2}\sg^3(c)+\:\cd+\zeta^2\sg^{n-1}(c)+\zeta c\)
 \(=\zeta(\zeta^{n-1}\sg(c)+\zeta^{n-2}\sg^2(c)+\zeta^{n-3}\sg^3(c)+\:\cd+\zeta\sg^{n-1}(c)+c)\)
 \(=\zeta\al\)
となる。計算では、\(\zeta^n=1\) であることと(第1項)、\(\sg^n=e\) なので \(\sg^n(c)=c\) となること(最終項)を用いた。

ここで、\(\al=\zeta\al\) となるのは、\(\al=0\) のときだけであるが、\(\al\neq0\) なので \(\al\neq\zeta\al\) である。つまり \(\sg(\al)\neq\al\) であり、\(\al\) は \(\sg\) を作用させると不変ではない。従って \(\al\) は \(\bs{K}\) の元ではない \(\bs{L}\) の元である。さらに \(\sg^i(\al)\) を求めていくと、

\(\begin{eqnarray}
&&\:\:\sg^2(\al)&=\sg(\sg(\al))=\sg(\zeta\al)=\zeta\sg(\al)=\zeta\zeta\al\\
&&&=\zeta^2\al\\
&&\:\:\sg^3(\al)&=\sg(\sg^2(\al))=\sg(\zeta^2\al)=\zeta^2\sg(\al)=\zeta^2\zeta\al\\
&&&=\zeta^3\al\\
\end{eqnarray}\)

というように計算でき、
 \(\sg^i(\al)=\zeta^i\al\)
である。これを使うと、
\(\begin{eqnarray}
&&\:\:\sg(\al^n)&=\sg(\al)^n=(\zeta\al)^n=\zeta^n\al^n\\
&&&=\al^n\\
\end{eqnarray}\)
であり、\(\al^n\) は \(\sg\) を作用させても不変である。従って \(\al^n\) は \(\bs{K}\) の元である。そこで \(\al^n=a\:\:(a\in\bs{K})\) とおく。

方程式 \(x^n-a=0\) の解は、\(\al,\:\zeta\al,\:\zeta^2\al,\:\cd,\:\zeta^{n-1}\al\) であり、\(x^n-a=0\) の \(\bs{K}\) 上の最小分解体は、\(\bs{K}\) には \(\zeta\) が含まれているから、

 \(\bs{K}(\al,\:\zeta\al,\:\zeta^2\al,\:\cd,\:\zeta^{n-1}\al)=\bs{K}(\al,\zeta)=\bs{K}(\al)\)

である。この式から、\(\bs{K}\) の同型写像による \(\al\) の移り先は全て \(\bs{K}(\al)\) に含まれることが分かる。従って \(\sg^i\:\:(1\leq i\leq n-1)\) はすべて \(\bs{K}(\al)\) の自己同型写像である。また、同型写像での移り先の定理(51D)により、同型写像は \(\al\) を共役な元に移すが、\(\al\) と共役な元は \(n-1\) 個しかない。従って \(\sg^i\) 以外に同型写像はない。つまり、

 \(\mr{Gal}(\bs{K}(\al)/\bs{K})=\{e,\:\sg,\:\sg^2,\:\cd\:,\:\sg^{n-1}\}\)

であり、これは \(\mr{Gal}(\bs{L}/\bs{K})\) と同じである。次数と位数の同一性の定理(52B)により、ガロア群に含まれる自己同型写像の数は体の拡大次数に等しいから、

 \([\:\bs{K}(\al)\::\:\bs{K}\:]=[\:\bs{L}\::\:\bs{K}\:]\)

である。もともと \(\al\) は \(\bs{L}\) の元だったので、\(\bs{K}(\al)\) の元は全て \(\bs{L}\) の元である。つまり、
 \(\bs{K}(\al)\:\subset\:\bs{L}\)
であるが、\(\bs{K}(\al)\) と \(\bs{L}\) の線形空間の次元が等しいので、体の一致の定理(33I)により2つは一致し、
 \(\bs{K}(\al)=\bs{L}\)
である。以上により、\(\bs{L}\) は \(\bs{K}\) の上の方程式 \(x^n-a=0\:(a\in\bs{K})\) の解の一つ \(\al\) を用いて \(\bs{L}=\bs{K}(\al)\) と表されるから、\(\bs{L}\) は \(\bs{K}\) の べき根拡大である。[証明終]


証明の過程で出てきた、

\(\al=c+\zeta^{n-1}\sg(c)+\zeta^{n-2}\sg^2(c)+\:\cd+\zeta^2\sg^{n-2}(c)+\zeta\sg^{n-1}(c)\)

の式は、方程式を解くために考えられた「ラグランジュの分解式」と呼ばれるものです。分解式はレゾルベント(resolvent)とも言い、数学史においてはガロア理論より前に考えられたものです。この証明を振り返ってまとめてみると、

\(\bs{L}\) は \(\bs{K}\) の代数拡大体であり、拡大次元は \(n\) である。
\(\bs{K}\) には \(1\) の原始\(n\)乗根が含まれている。
\(\bs{L}/\bs{K}\) はガロア拡大である。
\(\mr{Gal}(\bs{L}/\bs{K})\) は巡回群である(=\(\bs{L}/\bs{K}\) は巡回拡大)

という条件のもとで、レゾルベントをうまく定義すると、

ある \(\bs{L}\) の元 \(\al\:(\notin\bs{K})\) が存在し、\(\al^n\) は \(\bs{K}\) の元である。
すなわち \(\al\) は、方程式 \(x^n-a=0\:\:(a\in\bs{K})\) の解である。
\(\bs{L}=\bs{K}(\al)\) であり、従って \(\bs{L}/\bs{K}\) はべき根拡大である。

が成り立つという論理展開でした。つまりポイントは \(\bs{\al^n\in\bs{K}}\) のところであり、そういう \(\bs{\al\in\bs{L}}\) の存在が証明の核心です。

しかし、その鍵である \(\al\) を具体的に見つけようとすると、\(\al\) の式に現れる \(c\) を決めなければなりません。その \(c\) の値ですが、\(\bs{L}\) が方程式 \(f(x)=0\) の解 \(\theta\) を用いて \(\bs{L}=\bs{K}(\theta)\) と表されているとき(= \(\theta\) が原始元のとき)、\(c=\theta\) にできることがべき根拡大の十分条件のため補題272B)に示されています。しかし、方程式の形から原始元が分かるわけではありません。

べき根拡大の十分条件73A)は、その十分条件があればべき根拡大体の中に方程式の解が含まれる(= 方程式の解が四則演算とべき根で記述できる)ことだけを言っています。つまり四則演算とべき根で記述できる解の存在証明であり、そこが注意点です。

原始\(n\)乗根はべき根で表現可能
べき根拡大の十分条件73A)を用いて原始\(\bs{n}\)乗根はべき根で表現可能71A)であることを証明できます。(71A)ではガロア理論と関係なく証明しましたが、ガロア理論の枠組みを使っても証明できるということです。

まず \(n\) が合成数のとき、つまり \(n=s\cdot t\) と分解できるときには、原始\(n\)乗根は、原始\(s\)乗根と原始\(t\)乗根のべき根で表現できます(71A)。\(s\) や \(t\) が合成数なら、さらに "分解" を続けられるので、結局、\(n\) が素数 \(p\) のときに原始\(p\)乗根がべき根で表せることを示せればよいことになります。

いま、\(\bs{p}\) 未満の素数すべての原始\(\bs{n}\)乗根がべき根で表されると仮定します。これは帰納法の仮定です。原始\(p\)乗根を \(\eta\)(イータ) とし、その最小多項式を \(f(x)\) とすると、\(f(x)\) は既約多項式で、円分多項式です(63D)。原始\(p\)乗根は 方程式 \(x^p-1=0\) の \(1\) 以外の根なので、
 \(x^p-1=(x-1)f(x)\)
であり、
 \(f(x)=x^{p-1}+x^{p-2}+\:\cd\:+x+1\)
です。

原始\(p\)乗根による拡大体 \(\bs{Q}(\eta)\) のガロア群は、

 \(\mr{Gal}(\bs{Q}(\eta)/\bs{Q})\cong(\bs{Z}/p\bs{Z})^{*}\)

です(63E)。\((\bs{Z}/p\bs{Z})^{*}\) は位数 \((p-1)\) の巡回群で(25D)、\(\bs{Q}(\eta)/\bs{Q}\) の拡大次数は、\([\:\bs{Q}(\eta):\bs{Q}\:]=p-1\) です。原始\((p-1)\)乗根を \(\zeta\) とすると、\(\eta\notin\bs{Q}(\zeta)\) なので、\(\bs{Q}\) 上の既約多項式である \(f(x)\) は \(\bs{Q}(\zeta)\) 上でも既約多項式です。従って、

 \(\mr{Gal}(\bs{Q}(\zeta,\eta)/\bs{Q}(\zeta))\cong\mr{Gal}(\bs{Q}(\eta)/\bs{Q})\)

であり、\(\mr{Gal}(\bs{Q}(\zeta,\eta)/\bs{Q}(\zeta))\) も位数 \((p-1)\) の巡回群です。すると、べき根拡大の十分条件73A)により、\(\bs{Q}(\zeta,\eta)/\bs{Q}(\zeta)\) はべき根拡大になります。つまり \(\eta\) は "有理数と \(\zeta\) の四則演算から成る式" のべき根で表現できます。

「\(p\) 未満の素数すべての原始\(n\)乗根がべき根で表される」という仮定により、\(\zeta\) はべき根で表現できます。従って \(\eta\) もべき根で表されます。

原始\(2\)乗根は \(-1\) であり、原始\(3\)乗根は根の公式によって、べき根で表現できます。従って帰納法により \(5\) 以上の素数 \(p\) の原始\(p\)乗根もべき根で表現できることが分かります。これで証明ができました。


ここで、原始\(\bs{n}\)乗根はべき根で表現可能71A)とべき根拡大の十分条件73A)の関係ですが、(73A)の証明の鍵になったのは、ラグランジュの分解式、

\(\al=c+\zeta^{n-1}\sg(c)+\zeta^{n-2}\sg^2(c)+\:\cd+\zeta^2\sg^{n-2}(c)+\zeta\sg^{n-1}(c)\)

でした。いま、原始\(5\)乗根を \(\eta\) とし、\(\bs{Q}(\eta)/\bs{Q}\) の巡回拡大を考えます。原始\(4\)乗根を \(\zeta\) とします(\(\zeta=i,\:-i\))。

\(\bs{Q}(\eta)\) の自己同型写像 \(\sg\) を、
 \(\sg(\eta)=\eta^2\)
となる写像と定義します。そして、\(c=\eta,\:n=4\) を分解式に入れると、

\(\begin{eqnarray}
&&\:\:\al&=\eta+\zeta^3\sg(\eta)+\zeta^2\sg^2(\eta)+\zeta\sg^3(\eta)\\
&&&=\eta+\zeta^3\eta^2+\zeta^2\eta^4+\zeta\eta^3\\
\end{eqnarray}\)

となります。このラグランジュの分解式と、原始\(\bs{n}\)乗根はべき根で表現可能71A)の証明で使った \(f(x,y)\) は本質的に同じものです。つまり

\(f(x,y)=y^3x+y^4x^2+y^2x^3+y\)

と定義すると、\(x,\:y\) の指数はそれぞれ、

 \(x\) の指数:\([\:1,\:2,\:3,\:0\:]\)
   \(\bs{Z}/4\bs{Z}\) の巡回パターン(生成元 \(=1\))
 \(y\) の指数:\([\:3,\:4,\:2,\:1\:]\)
   \((\bs{Z}/5\bs{Z})^{*}\) の巡回パターン(生成元 \(=3\))

となります。(71A)では \((\bs{Z}/5\bs{Z})^{*}\) の巡回パターンを \([\:2,\:4\:,3,\:1\:]\)(生成元 \(=2\))としたので式の形は少々違いますが、本質的に同じです。ここで、
 \(x=\zeta,\:\:y=\eta\)
と置くと、

\(\begin{eqnarray}
&&\:\:f(x,y)&=\eta+\zeta^3\eta^2+\zeta^2\eta^4+\zeta\eta^3\\
&&&=\al\\
\end{eqnarray}\)

となり、\(f(x,y)\) が ラグランジュの分解式と同じものであることが確認できました。つまり、原始\(\bs{n}\)乗根はべき根で表現可能71A)の証明は、

ラグランジュの分解式での証明(73A)と同じことを、"分解式"、"体"、"ガロア群" などの概念を使わずに証明し、かつ、\((p-1)\)乗根をもとに \(p\)乗根を求める計算式を示した

ものなのでした。


7.4 べき根拡大と巡回拡大の同値性


6.3節の "べき根拡大は巡回拡大である"(63H)と、7.3節の "巡回拡大はべき根拡大である"(73A)を合わせると、次にまとめることができます。


べき根拡大と巡回拡大は同値:74A)

\(1\) の原始\(n\)乗根を \(\zeta\) とし、代数体 \(\bs{\bs{K}}\) には \(\bs{\zeta}\) が含まれるとする。また、\(\bs{K}\) の\(n\)次拡大体を \(\bs{L}\) とする( \([\:\bs{L}\::\:\bs{K}\:]=n\) )。

このとき、
\(\bs{L}/\bs{K}\) は巡回拡大である
\(\bs{L}/\bs{K}\) はべき根拡大である。
の2つは同値である。


\(\bs{1}\) の原始\(\bs{n}\)乗根が代数体に含まれるという条件をつけるのが巧妙なアイデアで、この条件によって可解性の必要十分条件が導けます。


7.5 可解性の十分条件


以上の準備をもとに、可解性の必要条件64B)の逆である、可解性の十分条件の証明を行います。

代数拡大体 \(\bs{K}\) 上の多項式 \(f(x)\) の最小分解体を \(\bs{L}\) とし、拡大次数を \([\:\bs{L}\::\:\bs{K}\:]=n\) とします。そして、ガロア群 \(\mr{Gal}(\bs{L}/\bs{K})\) が可解群であるとき、もし \(\bs{K}\) に \(1\) の原始\(n\)乗根が含まれるなら、べき根拡大と巡回拡大は同値の定理(74A)により、\(\bs{K}\) の巡回拡大とべき根拡大は同じことです。従って、

 可解群 \(\rightarrow\) 累巡回拡大 \(\rightarrow\) 累べき根拡大 \(\rightarrow\) 可解

というルートで、方程式 \(f(x)=0\) の可解性が証明できます。しかし、\(\bs{K}\) に \(1\) の原始\(n\)乗根が含まれるとは限りません。\(\bs{K}\) が有理数体 \(\bs{Q}\) だとすると、そこに(原始2乗根以外の)原始\(n\)乗根はありません。しかし、このようなケースでも方程式の可解性が証明できます。それが以下です。


可解性の十分条件:75A)

体 \(\bs{K}\) 上の方程式 \(f(x)=0\) の最小分解体を \(\bs{L}\) とする。\(\mr{Gal}(\bs{L}/\bs{K})=G\) とし、\(G\) は可解群とする。

このとき \(f(x)=0\) の解は四則演算とべき根で表現できる。


[証明]

\([\:\bs{L}\::\:\bs{K}\:]=n\:\:(|G|=n)\) とし、\(\zeta\) を \(1\) の原始\(n\)乗根とする。\(\bs{K}\) に \(\zeta\) を添加した拡大体 \(\bs{K}(\zeta)\)と、\(\bs{L}\) に \(\zeta\) を添加した拡大体 \(\bs{L}(\zeta)\) を考える。

\(\bs{L}(\zeta)\) は \(\bs{K}\) 上の方程式 \(f(x)(x^n-1)=0\) の最小分解体だから、\(\bs{L}(\zeta)/\bs{K}\) はガロア拡大である。

また \(\bs{K}(\zeta)\) は、\(\bs{K}\)のガロア拡大体 \(\bs{L}(\zeta)\) の中間体なので、中間体からのガロア拡大の定理(52C)によって、\(\bs{L}(\zeta)/\bs{K}(\zeta)\) もガロア拡大である。そこで、
 \(\mr{Gal}(\bs{L}(\zeta)/\bs{K}(\zeta))=G\,'\)
とおく。

可解性の十分条件.jpg
ポイントは、\(G\,'\) が \(G\) の部分群(\(G\) そのものも含む)と同型であることの証明である。これが成り立てば、① \(G\) は可解群なのでその部分群は可解群、② 可解群と同型な \(G\,'\) は可解群、③ \(G\,'\) が可解群なので \(\bs{L}(\zeta)/\bs{K}(\zeta)\) は累巡回拡大、④ \(\bs{K}(\zeta)\) は原始\(n\)乗根を含むので、累巡回拡大である \(\bs{L}(\zeta)/\bs{K}(\zeta)\) は累べき根拡大、が言える。

\(G\) の元を \(g\)、\(G\) の単位元を \(e\) とする。\(G\,'\)の元を \(g\,'\)、\(G\,'\) の単位元を \(e\,'\) とする。また、\(G\,'\) の元 \(g\,'\) を \(\bs{L}\) の元に限定して作用させるときの同型写像を \(\sg(g\,')\) とする。

\(g\,'\)は \(\bs{L}(\zeta)\) の自己同型写像だから、\(\bs{L}(\zeta)\) の元を共役な元に移す。従って 作用範囲を \(\bs{L}\) に限定した \(\sg(g\,')\) も \(\bs{L}\) の元を共役な元に移す。\(\bs{L}\) はガロア拡大体だから、\(\bs{L}\)の元の共役な元は \(\bs{L}\) に含まれる。従って \(\sg(g\,')\) は \(\bs{L}\) の自己同型写像である。

また \(g\,'\) は \(\mr{Gal}(\bs{L}(\zeta)/\bs{K}(\zeta))\) の元だから、\(\bs{K}(\zeta)\) の元を固定する。従って、\(\bs{K}(\zeta)\) の部分集合である \(\bs{K}\) の元も固定する。ゆえに、\(g\,'\) の作用範囲を \(\bs{L}\) に限定した \(\sg(g\,')\) も、\(\bs{L}\) の部分集合である \(\bs{K}\) の元を固定する。

以上により \(\sg(g\,')\) は、\(\bs{K}\)の元を固定する \(\bs{L}\) の自己同型写像だから、\(\mr{Gal}(\bs{L}/\bs{K})\) の元、つまり \(G\) の元である。

\(\sg\) を \(G\,'\) から \(G\) への写像と見なして考える。\(G\,'\) の元 を \(g\,'\) とし、\(x\) を \(\bs{L}\) の元とすると、\(g\,'(x)=\sg(g\,')(x)\) である。つまり、作用する対象が \(\bs{L}\) の元なら、2つの写像、\(g\,'\) と \(\sg(g\,')\) は同じ効果を生む。

\(G\,'\)の任意の2つの元を \(g_1{}^{\prime},\:g_2{}^{\prime}\) とすると、\(g_1{}^{\prime}g_2{}^{\prime}\) も \(G\,'\) の元だから、
 \(g_1{}^{\prime}g_2{}^{\prime}(x)=\sg(g_1{}^{\prime}g_2{}^{\prime})(x)\)
 \((\br{A})\)
である。左辺の \(g_2{}^{\prime}(x)\) は \(\sg(g_2{}^{\prime})(x)\) と同じなので、
 \(g_1{}^{\prime}g_2{}^{\prime}(x)=g_1{}^{\prime}(\sg(g_2{}^{\prime})(x))\)
であるが、\(\sg(g_2{}^{\prime})(x)\) もまた \(\bs{L}\) の元だから、
 \(g_1{}^{\prime}g_2{}^{\prime}x=\sg(g_1{}^{\prime})\sg(g_2{}^{\prime})(x)\)
 \((\br{B})\)
である。\((\br{A})\) と \((\br{B})\) より、
 \(\sg(g_1{}^{\prime}g_2{}^{\prime})=\sg(g_1{}^{\prime})\sg(g_2{}^{\prime})\)
となって、\(\sg\) は準同型写像42A)である。

\(\sg(g\,')\) が \(G\) の元であり \(\sg\) が準同型写像なので、準同型写像の像と核の定理(42B)により、\(\sg\) による \(G\,'\) の 像 \(\sg(G\,')\) は \(G\) の部分群である。もちろん、\(G\) の部分群には \(G\) の自明な部分群である \(G\) 自身も含まれる。


いま、ある \(G\,'\) の元 \(h\) があって、\(\sg(h)=e\)(\(e\) は \(G\) の単位元)とする。つまり、\(h\) を \(\bs{L}\) に限定して適用すると、\(\bs{L}\) の元すべてを固定するものとする。

\(G\,'\) は \(\mr{Gal}(\bs{L}(\zeta)/\bs{K}(\zeta))\) であり、そのすべての元は \(\bs{K}(\zeta)\) の元を固定する。従って、\(G\,'\) の元 \(h\) は \(\zeta\) も固定する。ということは、\(h\) は「\(\bs{L}\) の元すべてを固定し、かつ \(\zeta\) を固定する」から、\(\bs{L}(\zeta)\) の元すべてを固定する。つまり \(h\) は \(G\,'\) の単位元であり、\(h=e\,'\) である。

ゆえに、準同型写像の像と核42B)における核の定義によって、
 \(\mr{Ker}\:\sg=e\,'\)
であり、核が単位元なら単射の定理(42C)によって、\(\sg\) は単射である。このことから、準同型定理43A)により、
 \(G\,'/\mr{Ker}\:\sg\:\cong\:\sg(G\,')\)
すなわち、
 \(G\,'\:\cong\:\sg(G\,')\)
である。つまり \(\bs{G\,'}\)\(\bs{G}\) の部分群 \(\bs{\sg(G\,')}\) と同型である。


\(G\) は可解群なので、可解群の部分群は可解群の定理(61C)によって、\(G\) の部分群である \(\sg(G\,')\) も可解群であり、さらにそれと同型である \(G\,'\) も可解群である。\(G\,'\) が可解群なので、可解群の定義により \(G\,'\) から \(e\,'\) に至る部分群の列、
\(G\,'=H_0\sp H_1\sp\cd\sp H_i\sp H_{i+1}\sp\cd\sp H_k=\{e\,'\}\)
があって、\(H_{i+1}\) は \(H_i\) の正規部分群であり、\(H_i/H_{i+1}\) は巡回群である。

\(|G\,'|=m\) とおくと、\(G\,'\) は \(G\) の部分群である \(\sg(G\,')\) と同型なので、ラグランジュの定理41E)によって、\(m\) は \(|G|=n\) の約数である。

ガロア対応53B)による \(H_i\) の固定体を \(\bs{K}_i\) とすると、
\(\bs{K}(\zeta)=\bs{K}_0\subset\bs{K}_1\subset\cd\subset\bs{K}_i\subset\bs{K}_{i+1}\subset\cd\subset\bs{K}_k=\bs{L}(\zeta)\)
という固定体の系列が定義できる。\(H_i/H_{i+1}\) は巡回群なので、\(\bs{K}_{i+1}/\bs{K}_i\) は巡回拡大である。

\(\bs{L}(\zeta)/\bs{K}(\zeta)\) の拡大次数は、
 \([\:\bs{L}(\zeta)\::\:\bs{K}(\zeta)\:]=|G\,'|=m\)
であり、\(n\) の約数である。

固定体の系列における一つの拡大 \(\bs{K}_{i+1}/\bs{K}_i\)を考える。その拡大次数 \([\:\bs{K}_{i+1}\::\:\bs{K}_i\:]=m_i\) は、拡大次数の連鎖律33H)によって \([\:\bs{L}(\zeta)\::\:\bs{K}(\zeta)\:]=m\) の約数であり、従って \(n\) の約数である。

\(\bs{K}_i\) は \(1\) の原始\(n\)乗根 \(\zeta\) を含むから、\(\zeta^{\frac{n}{m_i}}\) も含んでいる。\(\zeta^{\frac{n}{m_i}}\) は \(1\) の原始\(m_i\)乗根である。つまり、\(\bs{K}_i\) は \(1\) の原始\(m_i\)乗根(\(m_i=[\:\bs{K}_{i+1}\::\:\bs{K}_i\:]\))を含む。従って、べき根拡大の十分条件の定理(73A)により、巡回拡大である \(\bs{K}_{i+1}/\bs{K}_i\) はべき根拡大である。

以上のことは \((0\leq i < k)\) のすべてで成り立つから、\(\bs{K}_i\) の系列は累べき根拡大である。


\(f(x)=0\) の解は \(\bs{L}\) に含まれるが、\(\bs{L}\:\subset\:\bs{L}(\zeta)\) だから \(f(x)=0\) の解は \(\bs{L}(\zeta)\) に含まれる。その \(\bs{L}(\zeta)\) は \(\bs{K}(\zeta)\) の累べき根拡大であり、また \(1\) の原始\(n\)乗根である \(\zeta\) は \(\bs{Q}\:(\in\bs{K})\) の元の四則演算とべき根で表現できるから(71A)、\(\bs{L}(\zeta)\) の元はすべて \(\bs{K}\) の元の四則演算とべき根で表現できる。従って \(f(x)=0\) の解も \(\bs{K}\) の元の四則演算とべき根で表現できる。[証明終]


この定理では「体 \(\bs{K}\) 上の方程式 \(f(x)=0\)」としましたが、もちろん、体 \(\bs{K}\) が 有理数体 \(\bs{Q}\) であっても同じです。以降、\(\bs{K}\) を \(\bs{Q}\) と書きます。

証明のポイントは、\(G=\mr{Gal}(\bs{L}/\bs{Q})\) とし、\(G\,'=\mr{Gal}(\bs{L}(\zeta)/\bs{Q}(\zeta))\) とするとき、\(G\,'\) が \(G\) の部分群と同型であることです。たとえば、\(f(x)\) が既約な3次多項式だと、\(G\cong S_3\) か \(G\cong C_3\) であり、基本的に \(G\,'\cong G\) です。しかし、そうならない場合もあります。たとえば \(f(x)=x^3-2\) では \(G\cong S_3\) ですが、
 \(\bs{Q}\:\subset\:\bs{Q}(\omega)\:\subset\:\bs{Q}(\omega,\sqrt[3]{2})=\bs{L}\)
  (\(\omega\) は \(1\) の原始3乗根)
という体の拡大列でわかるように、\(\bs{L}(\omega)=\bs{L}\) です。つまり、\(\bs{L}(\omega)/\bs{Q}(\omega)\) の拡大次数は \(3\) であり、\(\bs{L}/\bs{Q}\) の拡大次数の \(6\) とは違います。しかしそうであっても \(G\,'=\mr{Gal}(\bs{L}(\omega)/\bs{Q}(\omega))\cong C_3\) であり、\(G\,'\) は \(G\cong S_3\) の部分群と同型です。

\(G\,'\) は \(G\) の部分群と同型なので、\(G\) が可解群なら \(G\,'\) も可解群であり(61C)、\(\bs{L}(\omega)/\bs{Q}(\omega)\) は累巡回拡大であり(62C)、従って、累べき根拡大です(73A)。

さらに、\(1\) の原始\(n\)乗根が \(\bs{Q}\) の元の四則演算とべき根で表現できる(71A)ことも証明のポイントになっています。

この可解性の十分条件の定理(75A)によって、有理数係数の方程式 \(f(x)=0\) の最小分解体を \(\bs{L}\) として、\(\mr{Gal}(\bs{L}/\bs{Q})\) が可解群のとき、\(f(x)=0\) の解は四則演算とべき根で表現可能なことが証明できました。

ここがゴールで「ガロア理論=可解性の必要十分条件」が完結しました。


7.6 位数2の巡回拡大は平方根拡大:正5角形が作図できる理由


可解性の必要十分条件の証明は前節で尽きていますが、これ以降は可解な方程式の代表的なものを取り上げ、ガロア群の分析をします。まず最初は、
 \(x^5\)\(-1=0\)
 \(x^{17}\)\(-1=0\)
です。これらの方程式が可解であることは当然ですが、ガロア群の分析をすると正5角形と正\(17\)角形が定規とコンパスで作図できることを証明できます。

\(x^5-1=0\)
まず \(x^5-1=0\) の解を分析します。
 \(x^5-1=(x-1)(x^4+x^3+x^2+x+1)\)
なので、\(1\) 以外の解を \(\zeta\) とすると、\(\zeta\) は4次方程式、
 \(x^4+x^3+x^2+x+1=0\)
の解です。「7.1 1 の原始n乗根」で書いたように、この方程式の解は、
 \(\zeta=\dfrac{1}{4}\left(-1+\sqrt{5}\pm\sqrt{-10-2\sqrt{5}}\right)\)
 \(\zeta=\dfrac{1}{4}\left(-1-\sqrt{5}\pm\sqrt{-10+2\sqrt{5}}\right)\)
の4つであり、これが \(1\) の原始5乗根です。以下の論旨を明瞭にするために、虚数単位 \(i\) を使わずに、外側の \(\sqrt{\phantom{a}}\) の中を負の数にして記述しました。

この原始5乗根は、4次方程式の解であるにもかかわらず、四則演算と平方根 \(\sqrt{\phantom{a}}\) のみを使って表現されています。なぜそうなるのか、それをガロア理論にのっとって説明します。実は、\(p\) を素数としたとき、

原始\(\bs{p}\)乗根が四則演算と平方根 \(\bs{\sqrt{\phantom{a}}}\) のみで表現できれば、正 \(\bs{p}\)角形は定規とコンパスで作図可能である

ことが知られています。定規というのは「目盛りのない、与えられた2点を通る直線を引くことだけができる道具」であり、コンパスというのは「角度目盛りのない、与えられた2点のうちの1点を中心として別の点を通る円\(\cdot\)円弧を描くことだけができる道具」です。長さや角度を測ることはできません。作図可能の原理は次の項で説明します


\(f(x)=x^4+x^3+x^2+x+1\) とし、\(f(x)=0\) の解の一つを \(\zeta\) とすると、\(f(x)\) の最小分解体は \(\bs{Q}(\zeta)\) です。そのガロア群を、
 \(G=\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\)
と書くと、\(\zeta\) の最小多項式は \(f(x)\) なので(63C)、\(|G|=4\) です。また、\(\bs{\bs{Q}(\zeta)}\) のガロア群の定理(63E)により、\(G\) は既約剰余類群と同型で、
 \(G\cong(\bs{Z}/5\bs{Z})^{*}\)
です。
 \((\bs{Z}/5\bs{Z})^{*}=\{1,\:2,\:3,\:4\}\)
ですが、この群の生成元は \(2\) か \(3\) です。以下、生成元を \(2\) として話を進めると、
\(\begin{eqnarray}
&&\:\:(\bs{Z}/5\bs{Z})^{*}&=\{2,\:2^2,\:2^3,\:2^4\}\\
&&&=\{2,\:4,\:3,\:1\}\\
\end{eqnarray}\)
と表現できます。一方、\(f(x)=0\) の4つの解は、
  \(\zeta,\:\:\zeta^2,\:\:\zeta^3,\:\:\zeta^4\)
です。そこで、
 \(\sg(\zeta)=\zeta^2\)
で定義される自己同型写像を考えると、ガロア群は、
 \(G=\{\sg,\:\sg^2,\:\sg^3,\:\sg^4=e\}\)
となり、位数 \(4\) の巡回群、かつ可解群です。また、体の拡大次数は、
 \([\:\bs{Q}(\zeta):\bs{Q}\:]=4\)
です。

ガロア群 \(G\) には部分群が含まれています。つまり、
 \(H=\{\sg^2,\:e\}\)
  \(\sg^2(\zeta)=\zeta^4\)
と定義すると、\((\sg^2)^2=e\) なので \(H\) は部分群(\(\sg H=H\sg\) なので正規部分群)であり、位数 \(2\) の巡回群です。また、剰余群は、
 \(G/H\cong\{e,\:\sg\}\)
です。従って、

 \(G\:\sp\:H\:\:\sp\:\{\:e\:\}\)
   \(G/H\)\(\cong\{e,\:\sg\}\):位数 \(2\)
   \(H/\{\:e\:\}\)\(\cong H\):位数 \(2\)

は可解列です。ガロア対応の定理(53B)により、この可解列に対応する拡大体の列があって、

 \(G\sp H\sp\{\:e\:\}\)
 \(\bs{Q}\subset\bs{F}\subset\bs{Q}(\zeta)\)

となります。\(\bs{F}\) は \(H\) の固定体であり、\(\bs{Q}(\zeta)\) の中間体です。すると、正規性定理(53C)により、
 \(\mr{Gal}(\bs{F}/\bs{Q})\cong G/H\)
なので、\(\mr{Gal}(\bs{F}/\bs{Q})\) は位数 \(2\) の巡回群です。またガロア群の定義により、
 \(\mr{Gal}(\bs{Q}(\zeta)/\bs{F})\cong H\)
であり、\(\mr{Gal}(\bs{Q}(\zeta)/\bs{F})\) も位数 \(2\) の巡回群です。従って、次数と位数の同一性の定理(52B)より拡大次数は、
 \([\:\bs{F}\)\(:\bs{Q}\:]=2\)
 \([\:\bs{Q}(\zeta)\)\(:\bs{F}\:]=2\)
であり、2つの拡大は巡回拡大です。原始2乗根(\(=-1\))は \(\bs{Q}\) に含まれるので、巡回拡大はべき根拡大です(73A)。拡大次数 \(2\) のべき根拡大を(一般的な数学用語ではありませんが)「平方根拡大」と呼ぶことにすると、

\(\bs{\bs{Q}(\zeta)}\)\(\bs{\bs{Q}}\) からの平方根拡大を2回繰り返したものである

と結論づけられます。原始5乗根が四則演算と平方根 \(\sqrt{\phantom{a}}\) のみを使って表現できる理由がここにあります。


ここまでは、中間体 \(\bs{F}\) がどういう拡大体かに触れていませんが、\(\bs{F}\) を具体的に表現することもできます。\(\bs{F}\) は \(H=\{e,\:\sg^2\}\) の固定体なので、\(\bs{F}=\bs{Q}(\theta)\) として、
 \(\sg^2(\theta)=\theta\)
となる \(\theta\) を探します。\(\theta\) の選び方には自由度があり、たとえば \(\theta=\zeta^4+\zeta\) としてもよいのですが、ここでは、
 \(\theta=(\zeta^2-\zeta^3)(\zeta^4-\zeta)\)
とします。このように選ぶと、\(\sg^2(\zeta)=\zeta^4\) なので、
\(\begin{eqnarray}
&&\:\:\sg^2(\theta)&=(\zeta^8-\zeta^{12})(\zeta^{16}-\zeta^4)\\
&&&=(\zeta^3-\zeta^2)(\zeta-\zeta^4)=\theta\\
\end{eqnarray}\)
となって、\(\theta\) は \(\sg^2\) で不変です。と同時に、\(\sg(\zeta)=\zeta^2\) なので、
\(\begin{eqnarray}
&&\:\:\sg(\theta)&=(\zeta^4-\zeta^6)(\zeta^8-\zeta^2)\\
&&&=(\zeta^4-\zeta)(\zeta^3-\zeta^2)=-\theta\\
\end{eqnarray}\)
となります。ということは、
 \(\sg(\theta^2)=(\sg(\theta))^2=(-\theta)^2=\theta^2\)
であり、\(\theta^2\) は \(\sg\) で不変、つまり \(G\) のすべての元で不変となり、\(\theta^2\) は有理数です。そこで、
 \(\zeta^5=1\)
 \(\zeta^4+\zeta^3+\zeta^2+\zeta+1=0\)
の関係を使って \(\theta^2\) を計算すると、
\(\begin{eqnarray}
&&\:\:\theta^2&=(\zeta^2-\zeta^3)^2(\zeta^4-\zeta)^2\\
&&&=(\zeta^4-2\zeta^5+\zeta^6)(\zeta^8-2\zeta^5+\zeta^2)\\
&&&=(\zeta^4-2+\zeta)(\zeta^3-2+\zeta^2)\\
&&&=\zeta^7-2\zeta^4+\zeta^6-2\zeta^3+4-2\zeta^2+\zeta^4-2\zeta+\zeta^3\\
&&&=\zeta^2-2\zeta^4+\zeta-2\zeta^3+4-2\zeta^2+\zeta^4-2\zeta+\zeta^3\\
&&&=-\zeta^4-\zeta^3-\zeta^2-\zeta+4\\
&&&=5\\
\end{eqnarray}\)
となり、確かに\(\theta^2\) は有理数であることが分かります。つまり、
 \(\theta=\sqrt{5}\)
です。従ってガロア対応は、

 \(G\sp H\)\(\sp\{\:e\:\}\)
 \(\bs{Q}\subset\bs{Q}(\sqrt{5})\)\(\subset\:\bs{Q}(\zeta)\)

となります。原始5乗根に \(\sqrt{-10+2\sqrt{5}}\) のような項が現れるのは、中間体が \(\bs{Q}(\sqrt{5})\) であるという、体の拡大構造からくるのでした。


ここまでの論証を振り返ってみると、

\(p\) を素数とし、原始\(p\)乗根を \(\zeta\) とすると、
 \(|\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})|=|(\bs{Z}/p\bs{Z})^{*}|=p-1\)
なので、
 \(p-1=2^k\:\:(1\leq k)\)
の条件があると、\(\bs{Q}\) から \(\bs{Q}(\zeta)\) に至る「平方根拡大」の列が存在し、\(\zeta\) は四則演算と平方根 \(\sqrt{\phantom{a}}\) だけで表現できる。従って 正 \(p\)角形は定規とコンパスで作図可能である

ことが分かります。この条件は \(p=3,\:5\) で成立しますが、その次に成立するのは \(p=17\) です。

\(x^{17}-1=0\)
\(1\) の原始\(17\)乗根を \(\zeta\) とします。\(p=17\) の最小原始根は \(3\) で(25D)、\((\bs{Z}/17\bs{Z})^{*}\) の位数は \(16\) です。\((\bs{Z}/17\bs{Z})^{*}\) において \(3\) の累乗は、
 \(\phantom{1}3,\:\phantom{1}9,\:10,\:13,\:\phantom{1}5,\:15,\:11,\:16,\)
 \(14,\:\phantom{1}8,\:\phantom{1}7,\:\phantom{1}4,\:12,\:\phantom{1}2,\:\phantom{1}6,\:\phantom{1}1\)
と、すべての元を巡回します。従って、
 \(\sg(\zeta)=\zeta^3\)
という自己同型写像 \(\sg\) を定義すると、
 \(G=\{\sg,\sg^2,\sg^3,\cd,\sg^{15},\sg^{16}=e\}\)
が \(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) です。

\(x^5-1=0\) のときと同様の考察をすると、\(G\) には3つの部分群があります。

 \(H_1=\{\sg^2,\sg^4,\sg^6,\sg^8,\sg^{10},\sg^{12},\sg^{14},e\}\)
   \(\sg^2(\zeta)=\zeta^9\)
 \(H_2=\{\sg^4,\sg^8,\sg^{12},e\}\)
   \(\sg^4(\zeta)=\zeta^{13}\:\:(\phantom{1}9^2\equiv13\:\:(\mr{mod}\:17))\)
 \(H_3=\{\sg^8,e\}\)
   \(\sg^8(\zeta)=\zeta^{16}\:\:(13^2\equiv16\:\:(\mr{mod}\:17))\)

の3つで、

 \(G\sp H_1\sp H_2\sp H_3\sp\{\:e\:\}\)
   \(G\)\(/H_1\)\(\cong\{\sg^{\phantom{2}},\:e\}\)
   \(H_1\)\(/H_2\)\(\cong\{\sg^2,\:e\}\)
   \(H_2\)\(/H_3\)\(\cong\{\sg^4,\:e\}\)
   \(H_3\)\(/\{\:e\:\}\)\(\cong\{\sg^8,\:e\}\)

は可解列です。ガロア対応の定理(53B)により、\(H_1,\:H_2,\:H_3\) にはそれぞれに対応した固定体 \(\bs{F}_1,\:\bs{F}_2,\:\bs{F}_3\) があって、

 \(G\sp H_1\sp H_2\sp H_3\sp\{\:e\:\}\)
 \(\bs{Q}\subset\bs{F}_1\subset\bs{F}_2\subset\bs{F}_3\subset\bs{Q}(\zeta)\)

のガロア対応になります。\(\bs{Q}\) から \(\bs{Q}(\zeta)\) までの4つの拡大次数は、剰余群の位数に等しいのですべて \(2\) です。つまり、\(\bs{\bs{Q}(\zeta)}\)\(\bs{\bs{Q}}\) からの「平方根拡大」を4回繰り返したものであり、原始\(17\)乗根は四則演算と平方根 \(\sqrt{\phantom{a}}\) のみを使って表現できます。従って正\(17\)角形は定規とコンパスで作図可能です。

これは、ドイツの大数学者\(\cdot\)ガウス(\(1777-1855\))が\(19\)才のときに発見した定理として有名です。

作図可能の原理
ここで改めて、平面上の図形が定規とコンパスで「作図可能」という意味を明確にします。ここで "定規" は「目盛りのない、与えられた2点を通る線を引くことだけができる道具」であり、"コンパス" は「角度目盛りのない、与えられた2点のうちの1点を中心として別の点を通る円\(\bs{\cdot}\)円弧を描くことだけができる道具」でした。

平面上の図形は点と線でできています。線は2点を与えると描けるので、「作図可能」の意味は「平面上で作図可能な点とは何か」を定義することに帰着します。

平面を複素平面(\(=\bs{C}\))として考えます。以降、
 \(a,\:b\) \(\in\:\bs{R}\)
 \(\al,\:\beta\) \(\in\:\bs{C}\)
の記号を使います。「作図可能」の意味は「複素平面上で作図可能な複素数(実数を含む)とは何か」を定義することです。

\(1,\:0\) は作図可能である。また複素平面の実軸と虚軸は作図できる。

作図1.jpg

任意の線分を単位長さとし、端点を \(1,\:0\) とします。2点を結ぶ直線が実軸で、\(0\) を通り実軸と垂直な直線を作図するとそれが虚軸です。

\(\al=a+b\:i\) とすると、\(a,\:b\) が作図可能なら \(\al\) も作図可能である。また、\(\al\) が作図可能なら \(a,\:b\) も作図可能である。

作図2.jpg

\(a\) が作図可能なら、\(-a\) も作図可能である。従って \(\al\) が作図可能なら \(-\al\) も作図可能である。

また \(a,\:b\) が作図可能なら \(a+b\) も作図可能である。従って、\(\al,\:\beta\) が作図可能なら \(\al+\beta\) も作図可能である。

作図3.jpg

\(a,\:b\) が作図可能なら \(ab\)も作図可能である。従って \(\al,\:\beta\) が作図可能なら \(\al\beta\) も作図可能である。

作図4.jpg

\(a\:\:(a\neq0)\) が作図可能なら \(a^{-1}\) も作図可能である。従って \(\al\:\:(\al\neq0)\) が作図可能なら \(\al^{-1}\) も作図可能である。

作図5.jpg

作図可能な \(\al\) を \(\al=a+b\:i\) とすると、
 \(\al^{-1}=\dfrac{a}{a^2+b^2}-\dfrac{b}{a^2+b^2}\:i\)
です。\(a,\:b\) が作図可能なので、その四則演算の結果は作図可能です。従って \(\al^{-1}\) も作図可能です。

有理数 \(\bs{Q}\) は作図可能である。

実数のなかで作図可能な点は四則演算で閉じています。かつ、\(0,\:1\) は作図可能です。従って有理数は作図可能です。

\(a\) が正の実数のとき、\(\sqrt{a}\) は作図可能である。

作図6.jpg

\(a\) と \(-1\) を結ぶ線分を直径とする円を描き、虚軸との交点を \(x\cdot i\:(x\):実数) とすると、
 \(1:x=x:a\)
なので、\(x=\pm\sqrt{a}\) です。従って \(\sqrt{a}\) は作図可能です。

\(\al\) を作図可能な複素数とするとき、\(\sqrt\al\) は作図可能である。

作図7.jpg

極形式を使って、
 \(\al=r(\mr{cos}\theta+i\cdot\mr{sin}\theta)\)
とすると、\(r\) は作図可能であり、つまり \(\sqrt{r}\) も作図可能です。また、角 \(\theta\) を2等分する線も、定規とコンパスで作図可能です。従って \(\sqrt\al\) は作図可能です。

\(\al,\:\beta\) が作図可能な複素数とするとき、2次方程式 \(x^2+\al x+\beta=0\) の解は作図可能である。

ある複素数 \(\al\) は、作図可能な複素数を係数とする2次方程式、あるいは1次方程式の解となるときのみ、作図可能である。

2次方程式 \(x^2+\al x+\beta=0\) の解は、根の公式により、係数 \(\al,\:\beta\) の四則演算と平方根で表わされます。従って作図可能です。

定規とコンパスで作図可能な点は、作図可能な円や直線の交点として求まる点です。2次元 \(xy\) 平面( \(\bs{R}^2\) )で考えると、直線と直線の交点は1次方程式の解です。また円と直線の交点は2次方程式の解です。円と円の交点がどうかですが、\(a,\:b,\:c,\:d\) を実数として、2つの円の方程式を、
 \(x^2+y^2=a^2\)
 \((\br{A})\)
 \((x-b)^2+(y-c)^2=d^2\)
 \((\br{B})\)
とします。\((\br{A}),\:(\br{B})\) の両辺を引き算して整理すると、
 \(2bx+2cy-(b^2+c^2+a^2-d^2)=0\)
 \((\br{C})\)
という直線の方程式になります。2つの円の交点は \((\br{A}),\:(\br{C})\) の連立方程式の解であり、2次方程式の解です。つまり、作図可能な実数は、作図可能な実数を係数とする2次方程式(あるいは1次方程式)の解となる実数です。

実数(\(a,\:b\))が作図可能と、複素数(\(a+bi\))が複素平面上で作図可能は同値です。従って、ある複素数 \(\al\) は、作図可能な複素数を係数とする2次方程式、あるいは1次方程式の解となるときのみ、作図可能です。

\(\bs{Q}\) の代数拡大体 \(\bs{K}\) があり、

 \(\bs{Q}=\bs{K}_0\subset\bs{K}_1\subset\cd\subset\bs{K}_i\subset\bs{K}_{i+1}\subset\cd\subset\bs{K}_n=\bs{K}\)
 \([\:\bs{K}_{i+1}:\bs{K}_i\:]=2\:\:(0\leq i < n)\)

を満たす \(\bs{Q}\) から \(\bs{K}\) の拡大列が存在するとき、\(\bs{K}\) の元
 \(\al\in\bs{K}\)
は作図可能である。

\([\:\bs{K}_{i+1}:\bs{K}_i\:]=2\) であれば、\(\bs{K}_{i+1}/\bs{K}_i\) は次数2のべき根拡大であり、
 \(x^2-a=0\:\:\:(a\in\bs{K}_i)\)
の解、\(\sqrt{a}\) を用いて、
 \(\bs{K}_{i+1}=\bs{K}_i(\sqrt{a})\)
と表されます。従って、\(\bs{K}_i\) の元が作図可能なら、\(\bs{K}_{i+1}\) の元は「作図可能な点の四則演算と平方根の組み合わせ」で表現できるので、作図可能です。体の拡大列の出発点である \(\bs{Q}\) の元は作図可能なので、到達点である \(\bs{K}\) の元も作図可能になります。

\(1\) の原始\(p\)乗根(\(p\):素数)を \(\zeta\) とすると、\(G=\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) の位数は \(p-1\) であり、それが2の累乗であれば、\(G\) の可解列にガロア対応する体の拡大系列、

 \(\bs{Q}=\bs{K}_0\subset\bs{K}_1\subset\cd\subset\bs{K}_i\subset\bs{K}_{i+1}\subset\cd\subset\bs{K}_n=\bs{Q}(\zeta)\)
 \([\:\bs{K}_{i+1}:\bs{K}_i\:]=2\:\:(0\leq i < n)\)

が存在します(前項での証明)。従って複素数平面上の点 \(\zeta\) は作図可能であり、正 \(p\)角形は作図可能です。条件に合致する素数は \(p=3\)、\(5\)、\(17\)、\(257\)、\(65537\)であることが知られています。これらの素数をフェルマ素数と呼びます。フェルマ素数 \(p\) とは、\(p-1\) が2の累乗であるような素数です。

さらに、一般の正 \(n\)角形が作図可能である条件は、次のようになります。

正 \(n\)角形は、

 \(n=2^k\:\:\:(2\leq k)\)
 \(n=2^k\cdot p_1p_2\cd p_r\:\:\:(0\leq k,\:\:1\leq r)\)
   \(p_i\) は相異なるフェルマ素数

のとき、作図可能である。

[証明]

角度の2等分線は作図可能なので、\(n=2^k\:\:(2\leq k)\) のとき、正 \(n\)角形は作図可能である。と同時に、正 \(m\)角形が作図可能なとき、
 \(n=2^k\cdot m\:\:(0\leq k)\)
とおくと、正 \(n\)角形は作図可能になる。\(p\) がフェルマ素数のとき、正 \(p\)角形は作図可能なので、

\(m_1\) と \(m_2\) を互いに素な3以上の数とするとき、正 \(m_1\) 角形と正 \(m_2\)角形が作図可能であれば、正 \(m\)角形(\(m=m_1m_2\))は作図可能である

ことが証明できれば十分である。

\(\theta,\:\theta_1,\:\theta_2\) を任意の角度とする。
 \(\mr{sin}\theta=\sqrt{1-\mr{cos}^2\theta}\)
だから、\(\mr{cos}\theta\) が作図できれば \(\mr{sin}\theta\) も作図できる。また三角関数の加法定理より、
 \(\mr{cos}(\theta_1+\theta_2)=\mr{cos}\theta_1\cdot\mr{cos}\theta_2-\mr{sin}\theta_1\cdot\mr{sin}\theta_2\)
なので、\(\mr{cos}\theta_1,\:\mr{cos}\theta_2\) が作図できれば \(\mr{cos}(\theta_1+\theta_2)\) も作図できる。このことから \(\mr{cos}\theta\) が作図できれば \(\mr{cos}(k\theta)\:\:(k\) は整数)も作図できる。

複素平面上で原点を中心とする半径1の円に正 \(m\)角形を描いたとき、その頂点の複素数は
 \(\mr{cos}\left(\dfrac{2\pi}{m}k\right)+i\:\mr{sin}\left(\dfrac{2\pi}{m}k\right)\:\:(0\leq k\leq m-1)\)
である。\(k=1\) の点が作図できれば、残りの点が作図できるから、
 \(\mr{cos}\left(\dfrac{2\pi}{m}\right)\)
が作図できれば、正 \(m\)角形は作図できる。

\(m_1\) と \(m_2\) は互いに素だから、不定方程式の解の存在の定理(21C)により、
 \(k_1m_1+k_2m_2=1\)
を満たす \(k_1,\:k_2\) が存在する。両辺を \(m=m_1m_2\) で割ると
 \(\dfrac{k_1}{m_2}+\dfrac{k_2}{m_1}=\dfrac{1}{m}\)
 \(\dfrac{2\pi}{m_2}k_1+\dfrac{2\pi}{m_1}k_2=\dfrac{2\pi}{m}\)
が得られる。正 \(m_1\)角形と正 \(m_2\)角形 は作図できるから、
 \(\mr{cos}\left(\dfrac{2\pi}{m_1}\right),\:\:\mr{cos}\left(\dfrac{2\pi}{m_2}\right)\)
は作図できる。従って
 \(\mr{cos}\left(\dfrac{2\pi}{m_2}k_1+\dfrac{2\pi}{m_1}k_2\right)\)
は作図でき、
 \(\mr{cos}\left(\dfrac{2\pi}{m}\right)\)
も作図できることになって、正 \(m\)角形は作図できる。[証明終]


証明の鍵は「\(m_1\) と \(m_2\) が互いに素」です。従って、正3角形が作図できても、正9角形は作図できません。正\(15\)角形なら作図できます。計算すると、作図可能な正 \(n\)角形(\(n\leq100\))は、

\(n=\) \(3\)、\(4\)、\(5\)、\(6\)、\(8\)、\(10\)、\(12\)、\(15\)、\(16\)、\(17\)、\(20\)、\(24\)、\(30\)、\(32\)、\(34\)、\(40\)、\(48\)、\(51\)、\(60\)、\(64\)、\(68\)、\(80\)、\(85\)、\(96\)

です。「正\(50\)角形は作図できないが、正\(51\)角形は作図できる」というのも不思議な感じがします。


7.7 巡回拡大はべき根拡大:3次方程式が解ける理由


この節では可解な方程式がなぜ解けるのかを、3次方程式を例にとってガロア理論で説明します。また3次方程式の根の公式をガロア理論に沿った形て導出します。「7.5 可解性の十分条件」で証明したことは、


体 \(\bs{K}\) 上の方程式 \(f(x)=0\) の最小分解体を \(\bs{L}\) とする。\(\mr{Gal}(\bs{L}/\bs{K})=G\) とし、\(G\) は可解群とする。このとき \(f(x)=0\) の解は四則演算とべき根で表現できる。


でした。この証明の核となっているのは「7.3 べき根拡大の十分条件」であり、それは、


1の原始\(n\)乗根を \(\zeta\) とし、代数体 \(\bs{\bs{K}}\) には \(\bs{\zeta}\) が含まれるとする。\(\bs{L}/\bs{K}\) をガロア拡大とし、\(\mr{Gal}(\bs{L}/\bs{K})\) が巡回群とする(= \(\bs{L}/\bs{K}\) が巡回拡大)。拡大次数は \([\bs{L}:\bs{K}]=n\) とする。このとき、\(\bs{L}\) は \(\bs{K}\) のべき根拡大である。


でした。このことを証明した論理展開は、次のようでした。


次の条件があるとする。
\(\bs{L}\) は \(\bs{K}\) の代数拡大体であり、拡大次元は \(n\) である。
\(\bs{K}\) には \(1\) の原始\(n\)乗根が含まれる。
\(\bs{L}/\bs{K}\) はガロア拡大である。
\(\mr{Gal}(\bs{L}/\bs{K})\) は巡回群である(=\(\bs{L}/\bs{K}\) は巡回拡大)

このとき、レゾルベント(分解式)を定義することで、
\(\al^n\) が \(\bs{K}\) の元であるような \(\bs{L}\) の元 \(\al\) が存在する。すなわち、\(x^n-a=0\:\:(a\in\bs{K})\) の解が \(\al\in\bs{L}\)
このとき \(\bs{L}=\bs{K}(\al)\) になり、従って \(\bs{L}/\bs{K}\) はべき根拡大
となる。


つまり、レゾルベントを使って、巡回拡大=べき根拡大(但し、体に \(1\) の原始\(n\)乗根が含まれることが条件)を証明したわけです。この証明プロセスを、具体的な3次方程式で順にたどります。まず、3次方程式のガロア群を再度整理します。

3次方程式のガロア群
3次方程式のガロア群は「1.3 ガロア群」で計算しましたが、改めて書きます。3次方程式のガロア群は、3次方程式の3つの解、\(\al,\:\beta,\gamma\) を入れ替える(置換する)群であり、一般的には、

 \(G=\{e,\:\sg,\:\sg^2,\:\tau,\:\sg\tau,\:\sg^2\tau\}\)

です。3つの解をそれぞれ \(1,\:2,\:3\) の文字で表し、巡回置換の記法(6.5節)で書くと、
 \(\sg\) \(=(1,\:2,\:3)\)
 \(\sg^2\) \(=(1,\:3,\:2)\)
 \(\tau\) \(=(2,\:3)\)
 \(\sg\tau\) \(=(1,\:2)\)
 \(\sg^2\tau\) \(=(1,\:3)\)
で(\(\sg,\:\tau\) の演算は右から行う)、これは3次の対称群(\(S_3\)。6.5節)です。この群はもちろん可換群ではなく \(\tau\sg\neq\sg\tau\) ですが、\(\tau\sg\) を計算すると、
 \(\tau\sg=(1,\:3)\)
であり、
 \(\tau\sg=\sg^2\tau\)
との関係が成り立っています。これを "弱可換性" と呼ぶことにします(ここだけの用語です)。ここで、

 \(H=\{e,\:\sg,\:\sg^2\}\)

という \(G\) の部分群を考えると、\(H\) は巡回群であると同時に \(G\) の正規部分群です。"弱可換性" を使って検証してみると、
\(\begin{eqnarray}
&&\:\:\tau H&=\{\tau,\:\tau\sg,\:\tau\sg^2\}\\
&&&=\{\tau,\:\sg^2\tau,\:\sg^2\tau\sg\}\\
&&&=\{\tau,\:\sg^2\tau,\:\sg^4\tau\}\\
&&&=\{\tau,\:\sg^2\tau,\:\sg\tau\}\\
&&&=\{\tau,\:\sg\tau,\:\sg^2\tau\}\\
&&&=H\tau\\
\end{eqnarray}\)
となります。つまり、
 \(\tau H=H\tau\)
です。さらに、この式に左から \(\sg\) をかけると、
 \(\sg\tau H=\sg H\tau\)
ですが、\(H\) のすべての元は \(\sg\) で表現できるので、\(\sg H=H\sg\) です。従って、
 \(\sg\tau H=H\sg\tau\)
であり、同様にして、
 \(\sg^2\tau H=H\sg^2\tau\)
も分かります。つまり、任意の \(\bs{G}\) の元 \(\bs{x\in G}\) について、\(\bs{xH=Hx}\) が成り立つので \(H\) は \(G\) の正規部分群です。

\(G\) の \(H\) による剰余群は、
 \(G/H=\{H,\tau H\}\)
であり、単位元は \(H\) で、
 \((\tau H)^2=\tau H\tau H=\tau\tau HH=H\)
となる、位数\(2\) の巡回群です(\(G/H\cong C_2)\)。この結果、

 \(G\:\sp\:H\:\sp\:\{\:e\:\}\)

は可解列になり、\(G\) は可解群で、従って3次方程式は可解です(=四則演算とべき根で解が表現可能)。この節ではそれを具体例で確認していきます。


一方、「3.3 線形空間」の「代数拡大体の構造」で書いたように、3次方程式のガロア群が \(S_3\) ではなく、位数 \(3\) の巡回群( \(C_3\) )になる場合があります。それを再度整理します。

\(x^3+ax^2+bx+c=0\) の3次方程式は、\(x=X-\dfrac{a}{3}\) とおくと、
 \(X^3+\left(b-\dfrac{a^2}{3}\right)X+\left(\dfrac{2}{27}a^3-\dfrac{1}{3}ab+c\right)=0\)
となって、2乗の項が消えます。従って以降、3次方程式を、
 \(x^3+px+q=0\)
の形で扱います。
 \(f(x)=x^3+px+q\)
とおき、\(f(x)\) は既約多項式とします。3次方程式の根を \(\al,\:\beta,\:\gamma\) とすると、
 \(x^3+px+q=(x-\al)(x-\beta)(x-\gamma)\)
であり、根と係数の関係から、
 \(\al+\beta+\gamma=0\)
 \(\al\beta+\beta\gamma+\gamma\al=p\)
 \(\al\beta\gamma=-q\)
です。3次方程式のガロア群が \(S_3\) か \(C_3\) かを決めるポイントとなるのは、

 \(\theta=(\al-\beta)(\beta-\gamma)(\gamma-\al)\)

で定義される、根の差積と呼ばれる値です。差積は普通、\(\Delta\)(ギリシャ文字・デルタの大文字)で表しますが、後の説明の都合で \(\theta\) と書きます。差積は、任意の2つの根の互換で \(-\theta\) となるので、3つの根を \(\al,\:\beta,\:\gamma\) に割り当てる方法によって、\(\theta\) は2つの値をとり得ます。差積の2乗が判別式であり、

 \(D=(\al-\beta)^2(\beta-\gamma)^2(\gamma-\al)^2\)

です。つまり \(\theta=\sqrt{D}\) と書けますが、\(\sqrt{D}\) は「2乗して \(D\) となる2つの数のどちらか」の意味です。\(D\) は \(\al,\:\beta,\:\gamma\) の任意の置換で不変な対称式なので、3次方程式の係数である \(p,\:q\) で表すことができる有理数です。

その \(D\) を方程式の係数で表すために、\(f(x)\) を微分します。
 \(f(x)=(x-\al)(x-\beta)(x-\gamma)\)
なので、
\(\begin{eqnarray}
&&\:\:f\,'(x)=&(x-\al)(x-\beta)+(x-\beta)(x-\gamma)+\\
&&&(x-\gamma)(x-\al)\\
\end{eqnarray}\)
であり、
 \(f\,'(\al)=(\al-\beta)(\al-\gamma)\)
 \(f\,'(\beta)=(\beta-\gamma)(\beta-\al)\)
 \(f\,'(\gamma)=(\gamma-\al)(\gamma-\beta)\)
となります。従って、
 \(D=-f\,'(\al)f\,'(\beta)f\,'(\gamma)\)
です。一方、
 \(f\,'(x)=3x^2+p\)
なので、
 \(D=-(3\al^2+p)(3\beta^2+p)(3\gamma^2+p)\)
となります。ここからの計算を進めるために、次の2つの対称式を、根と係数の関係を使って \(p\) で表しておきます。
 ・\(\al^2+\beta^2+\gamma^2\)
   \(=(\al+\beta+\gamma)^2-2(\al\beta+\beta\gamma+\gamma\al)\)
   \(=-2p\)
 ・\(\al^2\beta^2+\beta^2\gamma^2+\gamma^2\al^2\)
   \(=(\al\beta+\beta\gamma+\gamma\al)^2-2\al\beta\gamma(\al+\beta+\gamma)\)
   \(=p^2\)
これを用いると、
\(\begin{eqnarray}
&&\:\:D&=&-(3\al^2+p)(3\beta^2+p)(3\gamma^2+p)\\
&&&=&-27(\al\beta\gamma)^2-9(\al^2\beta^2+\beta^2\gamma^2+\gamma^2\al^2)p\\
&&&&-3(\al^2+\beta^2+\gamma^2)p^2-p^3\\
&&&=&-27q^2-9\cdot p^2\cdot p-3\cdot(-2p)\cdot p^2-p^3\\
&&&=&-4p^3-27q^2\\
\end{eqnarray}\)
と計算できます。つまり、

 \(D=-4p^3-27q^2\)

です。ここでもし、\(D\) がある有理数 \(a\) の2乗(\(D=a^2\))なら、

 \(\theta=\sqrt{D}=\pm a\)

となり、\(\theta\) は有理数です。\(\theta\) が有理数(\(\theta=\pm a\))の場合、
 \(f\,'(\al)=(\al-\beta)(\al-\gamma)\)
 \(f\,'(\al)=3\al^2+p\)
の関係があるので、
\(\begin{eqnarray}
&&\:\:\theta&=(\al-\beta)(\beta-\gamma)(\gamma-\al)\\
&&&=-f\,'(\al)(\beta-\gamma)\\
&&&=-(3\al^2+p)(\beta-\gamma)\\
\end{eqnarray}\)
ですが、\(\theta=\pm a\) なので、
 \(\beta-\gamma=\pm\dfrac{a}{3\al^2+p}\)
です。この式と、根と係数の関係である、
 \(\beta+\gamma=-\al\)
を使うと、\(\bs{\beta}\)\(\bs{\gamma}\)\(\bs{\al}\) の有理式(=分母・分子が \(\bs{\al}\) の多項式)で表現できることになります。計算すると(\(\pm\)は省略して)、
 \(\beta=\dfrac{2p\al+3q-a}{2(3\al^2+p)}\)
 \(\gamma=\dfrac{2p\al+3q+a}{2(3\al^2+p)}\)
です(\(\beta\) と \(\gamma\) は逆でもよい)。\(\beta,\:\gamma\) が \(\al\) の有理式で表現できるので、
 \(\bs{Q}(\al,\beta,\gamma)\subset\bs{Q}(\al)\)
であり、もちろん \(\bs{Q}(\al,\beta,\gamma)\sp\bs{Q}(\al)\) なので。

 \(\bs{Q}(\al,\beta,\gamma)=\bs{Q}(\al)\)

です。\(\bs{Q}(\al)\) のところは \(\bs{Q}(\beta)\) や \(\bs{Q}(\gamma)\) とすることができます。

つまり、\(\bs{Q}\) 上の既約多項式 \(f(x)=x^3+px+q\) の最小分解体 \(\bs{L}=\bs{Q}(\al,\beta,\gamma)\) は、方程式の解の一つである \(\al\) の(または \(\beta,\:\gamma\) の)単拡大体であり、単拡大体の基底の定理(33F)により \(\bs{L}\) の次元は \(3\) です。すると次数と位数の同一性52B)により、\(G=\mr{Gal}(\bs{L}/\bs{Q})\) の群位数は \(3\) です。従って、ラグランジュの定理41E)により群位数が素数の群は巡回群なので、\(G\) は群位数 \(3\) の巡回群( \(C_3\) )です。


以上をまとめると、3次方程式の最小分解体のガロア群は、次のようになります。

前提として、

 ・\(f(x)=x^3+px+q\:\:(p,\:q\in\bs{Q})\)
  ( \(f(x)\) は既約多項式 )
 ・\(f(x)=0\) の解を \(\al,\:\beta,\:\gamma\)
 ・\(\theta=(\al-\beta)(\beta-\gamma)(\gamma-\al)\)
 ・\(f(x)\) の最小分解体を \(\bs{L}=\bs{Q}(\al,\beta,\gamma)\)
 ・\(G=\mr{Gal}(\bs{L}/\bs{Q})\)

とする。この前提のもとで、

\(\bs{\theta}\):有理数のとき
 \(G\cong C_3\)
  \(G=\{\:e,\:\sg,\:\sg^2\:\}\)
    \(\sg=(1,\:2,\:3)\)
  \(G\) は巡回群なので可解群

\(\bs{\theta}\):有理数でないとき
 \(G\cong S_3\)
  \(G=\{e,\:\sg,\:\sg^2,\:\tau,\:\sg\tau,\:\sg^2\tau\}\)
    \(\sg=(1,\:2,\:3)\:\:\tau=(2,\:3)\)
  \(H=\{e,\:\sg,\:\sg^2\}\) は \(G\) の正規部分群
  \(G\:\sp\:H\:\:\sp\:\{\:e\:\}\) は可解列
    \(G/H\)\(=\{H,\:\tau H\}\)\(\cong C_2\)
    \(H/{e}\)\(=H\)\(\cong C_3\)
  \(G\) は可解群

なお、\((1,\:2,\:3)\:\:(2,\:3)\) の巡回置換は \((1,\:3,\:2)\:\:(1,\:2)\:\:(1,\:3)\) などとしても同じです。

\(C_3\::\:x^3-3x+1\)
まずガロア群が \(C_3\) の方程式 \(x^3-3x+1=0\) を取り上げ、巡回拡大がべき根拡大になる原理を確認します。この原理はガロア群が \(S_3\) のときにもそのまま応用できます。ちなみに \(C_3\) の方程式は \(p,\:q\) が \(-9\leq p\leq-1,\:\:1\leq q\leq9\) の整数だと、他に、
 \(x^3-7x+6=0\:\:\:(D=400,\:\sqrt{D}=20)\)
 \(x^3-7x+7=0\:\:\:(D=\phantom{0}49,\:\sqrt{D}=\phantom{0}7)\)
 \(x^3-9x+9=0\:\:\:(D=729,\:\sqrt{D}=27)\)
があります。

\(x^3-3x+1=0\) の場合、\(p=-3,\:q=1\) なので、
\(\begin{eqnarray}
&&\:\:D&=-4p^3-27q^2=81=9^2\\
&&\:\:\theta&=\pm\sqrt{D}=\pm9\\
\end{eqnarray}\)
となります。3つの解を \(\al,\:\beta,\:\gamma\) とすると、
 \(\bs{L}=\bs{Q}(\al,\beta,\gamma)=\bs{Q}(\al)=\bs{Q}(\beta)=\bs{Q}(\gamma)\)
で、\(\bs{L}\) の次元は \(3\) で、\(G=\mr{Gal}(\bs{L}/\bs{Q})\cong C_3\) です。

以下「7.3 べき根拡大の十分条件」の証明の論理に沿います。7.3 の証明では、体に \(1\) の原始\(n\)乗根が含まれているのが条件でした。そこで \(1\) の原始3乗根 を \(\omega\) とし、

 \(\bs{Q}(\omega)\:\subset\:\bs{Q}(\omega,\:\al)=\bs{L}(\omega)\)

という体の拡大を考えます。\(\omega\) は \(x^2+x+1=0\) の2つある根のどちらかで、
 \(\omega=\dfrac{1}{2}(-1\pm\sqrt{3}i)\)
です。7.3 ではラグランジュのレゾルベントを \(\al\) と書きましたが、方程式の根の表記との重複を避けるため、ここでは \(S\) とします。そうするとレゾルベントは、

 \(S=c+\omega^2\sg(c)+\omega\sg^2(c)\)
 \((\br{A})\)

です。\(\bs{Q}(\omega,\:\al)\) は \(\bs{Q}(\omega)\) に \(\al\) を添加した単拡大体なので、べき根拡大の十分条件のため補題272B)に従って、\(c=\al\) と定めます。そうすると、
 \(S=\al+\omega^2\sg(\al)+\omega\sg^2(\al)\)
となり、\(\al,\:\beta,\:\gamma\) で表すと、\((\br{A})\) 式は、

 \(S=\al+\omega^2\beta+\omega\gamma\)
 \((\br{B})\)

です。この \(S\) は \(\bs{Q}(\omega,\al,\beta,\gamma)\) の元ですが、
 \(\bs{Q}(\omega,\al,\beta,\gamma)=\bs{Q}(\omega,\al)\)
なので、\(S\) は \(\bs{Q}(\omega,\al)\) の元であり、ということは、
 \(\bs{Q}(\omega,\:S)\subset\bs{Q}(\omega,\al)\)
です。方程式の3つの解を \(\al,\:\beta,\:\gamma\) に割り当てる方法の数(\(=3!\) )により、\(S\) は6通りの可能性があります。

7.3 での証明のポイントは、\(\bs{S^3}\)\(\bs{\bs{Q}(\omega)}\) の元である、というところでした。それを計算で確かめるため、もうひとつのレゾルベントを導入します。ガロア群 \(G=\{e,\sg,\sg^2\}\) は、\(\sg\) が生成元であると同時に、\(\sg^2\) も生成元です。レゾルベントの定義における \(\sg\) は \(G\) の生成元であることが条件でした(73A)。そこで \((\br{A})\) 式の \(\sg\) を \(\sg^2\) で置き換えた式を \(T\) とすると、
\(\begin{eqnarray}
&&\:\:T&=c+\omega^2\sg^2(c)+\omega\sg^4(c)\\
&&&=c+\omega^2\sg^2(c)+\omega\sg(c)\\
\end{eqnarray}\)
となります。この式で \(c=\al\) とおくと

 \(T=\al+\omega\beta+\omega^2\gamma\)

です。\(S\) には6通りの可能性がありますが、\(S\) をそのうちの一つに決めると \(T\) は一意に決まります。ここで、
 \(\al+\omega^2\beta\)\(+\omega\gamma\)\(=S\)
 \(\al+\omega\beta\)\(+\omega^2\gamma\)\(=T\)
 \(\al+\beta\)\(+\gamma\)\(=0\) (根と係数の関係)
は \(\al,\:\beta,\:\gamma\) を未知数とする連立1次方程式なので、\(\al,\:\beta,\:\gamma\) を \(S\) と \(T\) の式で表せます。連立方程式を解くと、

 \(\al=\dfrac{1}{3}(S+T)\)
 \(\beta=\dfrac{1}{3}(\omega S+\omega^2T)\)
 \((\br{C})\)
 \(\gamma=\dfrac{1}{3}(\omega^2S+\omega T)\)

です。さらに、\(S\) と \(T\) には特別の関係があります。
 \(ST=(\al+\omega^2\beta+\omega\gamma)(\al+\omega\beta+\omega^2\gamma)\)
という式を考えると、
\(\begin{eqnarray}
&&\:\:ST&=&\al^2+\beta^2+\gamma^2+\\
&&&&(\omega^2+\omega)\al\beta+(\omega^4+\omega^2)\beta\gamma+(\omega^2+\omega)\gamma\al\\
&&&=&(\al+\beta+\gamma)^2-2(\al\beta+\beta\gamma+\gamma\al)+\\
&&&&(-\al\beta-\beta\gamma-\gamma\al)\\
&&&=&-3(\al\beta+\beta\gamma+\gamma\al)\\
&&&=&-3p\\
\end{eqnarray}\)
となり、つまり、

 \(ST=-3p\)
 \((\br{D})\)

という関係です。上の式の変形では、根と係数の関係と \(\omega^2+\omega+1=0\)、および \(\omega^3=1\) を使いました。

次に、\(S^3\) を求めるために \(S^3+T^3\) を計算してみると、
\(\begin{eqnarray}
&&\:\:S^3+T^3&=(S+T)(S^2-ST+T^2)\\
&&&=(S+T)(S+\omega T)(S+\omega^2T)\\
\end{eqnarray}\)
です。ここで \((\br{C})\) 式を変形すると、
 \(3\al\)\(=S+T\)
 \(3\omega^2\beta\)\(=S+\omega T\)
 \(3\omega\gamma\)\(=S+\omega^2T\)
が得られるので、
\(\begin{eqnarray}
&&\:\:S^3+T^3&=3\al\cdot3\omega^2\beta\cdot3\omega\gamma\\
&&&=27\al\beta\gamma=-27q\\
\end{eqnarray}\)
となります。まとめると、
 \(S^3+T^3=-27q\)
 \(ST=-3p\)
であり、
 \(S^3-\dfrac{27p^3}{S^3}+27q=0\)
です。つまり、

 \((S^3)^2+27qS^3-27p^3=0\)
 \((\br{E})\)

という \(S^3\) についての2次方程式を解くことで \(S^3\) が求まり、そこから \(S\) が求まります。\(S\) の値の可能性は6通りです。また \(T^3\) についても、

 \((T^3)^2+27qT^3-27p^3=0\)
 \((\br{E}')\)

が成り立ちます。2次方程式、

 \(X^2+27qX-27p^3=0\)
 \((\br{F})\)

の2つの解が \(S^3\) と \(T^3\) です。


ここまでの計算は \(x^3+px+q=0\) の形の既約方程式なら成り立ちます。ここで \(x^3-3x+1=0\) に即した、\(p=-3,\:q=1\) を \((\br{E})\) 式に入れると、

 \((S^3)^2+27S^3+27^2=0\)

\(\begin{eqnarray}
&&\:\:S^3&=\dfrac{1}{2}\left(-27\pm\sqrt{27^2-4\cdot27^2}\right)\\
&&&=27\dfrac{-1\pm i\sqrt{3}}{2}\\
&&&=27\omega\\
\end{eqnarray}\)

となります。最後の式の \(\omega\) は、2つある \(1\) の原始3乗根のどちらか、という意味にとらえます。\(S^3=27\omega\) なら \(T^3=27\omega^2\) で、その逆でもよいわけです。

\((\br{C})\) 式と \((\br{D})\) 式により、\(\al\) は \(S\) と \(\omega\) の四則演算で表現できます。つまり、
 \(\bs{Q}(\omega,\al)\subset\bs{Q}(\omega,\:S)\)
です。従って、さきほどの \(\bs{Q}(\omega,\:S)\subset\bs{Q}(\omega,\:\al)\) と合わせると、
 \(\bs{Q}(\omega,\:S)=\bs{Q}(\omega,\:\al)\)
です。以上をまとめると、レゾルベント \(S\) について、
\(\begin{eqnarray}
&&\:\:S^3&\in\bs{Q}(\omega)\\
&&\:\:S&\in\bs{Q}(\omega,\:S)=\bs{Q}(\omega,\:\al)\\
\end{eqnarray}\)
です。つまり、

\(\bs{Q}(\omega)\) 上の方程式、
  \(x^3-a=0\:\:(\:a=27\omega\in\bs{Q}(\omega)\:)\)
の解の一つ、\(\sqrt[3]{a}\) を \(\bs{Q}(\omega)\) に添加したのが \(\bs{Q}(\omega,\:\al)\)

であり、\(\bs{\bs{Q}(\omega,\:\al)}\)\(\bs{\bs{Q}(\omega)}\) のべき根拡大体であることがわかりました。\(\bs{Q}(\omega,\:\al)\) は \(x^3-a=0\) の解、\(\sqrt[3]{a},\:\sqrt[3]{a}\:\omega,\:\sqrt[3]{a}\:\omega^2\) の全部を含むので、\(\bs{Q}(\omega)\) のガロア拡大体です。結論として、

方程式 \(x^3-3x+1=0\) の解は、
有理数
\(\omega\)(\(1\) の原始3乗根)
\(\sqrt[3]{a}\:\:(\:a\in\bs{Q}(\omega)\:)\)
の四則演算で表現できる

ことになります。\(x^3-3x+1=0\) の場合、\(a=27\omega\) です。


巡回拡大がべき根拡大になることの証明のフォローはここまでですが、\(x^3-3x+1=0\) の解を具体的に求めることもできます。\(S^3=27\omega\) から、\(S=3\cdot\sqrt[3]{\omega}\) であり、また \(ST=9\) なので、
\(\begin{eqnarray}
&&\:\:\al&=\dfrac{1}{3}(S+T)=\dfrac{1}{3}\left(S+\dfrac{9}{S}\right)\\
&&&=\sqrt[3]{\omega}+\dfrac{1}{\sqrt[3]{\omega}}=\sqrt[3]{\omega}+\sqrt[3]{\omega^2}\\
&&&=\sqrt[3]{-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i}+\sqrt[3]{-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i}\\
\end{eqnarray}\)

が解の一つです。「1.3 ガロア群」の「ガロア群の例」に書いたように、

 \(\al=1.53208888623796\:\cd\)

であり、正真正銘の正の実数ですが、\(\bs{\al}\) をべき根で表わそうとすると虚数単位が登場します。その理由がガロア理論から分かるのでした。

\(S_3\::\:x^3+px+q\)
方程式 \(x^3+px+q=0\) の係数を変数のままで扱い、ガロア群が \(S_3\) の方程式の一般論として話を進めます。3つの根を \(\al,\:\beta,\:\gamma\) とし(置換での表示では、それぞれ \(1,\:2,\:3\))、差積 \(\theta\) を、

\(\begin{eqnarray}
&&\:\:\theta&=(\al-\beta)(\beta-\gamma)(\gamma-\al)\\
&&&=\sqrt{D}\\
&&\:\:D&=-4p^3-27q^2\\
\end{eqnarray}\)

と定義すると、\(\bs{\theta}\) が有理数でないとき

\(G\cong S_3\)
 \(G=\{e,\:\sg,\:\sg^2,\:\tau,\:\sg\tau,\:\sg^2\tau\}\)
   \(\sg=(1,\:2,\:3)\:\:\tau=(2,\:3)\)
 \(H=\{e,\:\sg,\:\sg^2\}\) は \(G\) の正規部分群
 \(G\:\sp\:H\:\:\sp\:\{\:e\:\}\) は可解列
   \(G/H=\{H,\:\tau H\}\cong C_2\)
   \(H/{\:e\:}=H\cong C_3\)
 \(G\) は可解群

となります(前述)。\(G\cong S_3\) は巡回群ではありません。しかし可解群なので "巡回群の入れ子構造" になっていて(=可解列が存在する)、「巡回拡大はべき根拡大」の定理(73A)を2段階に使うことで、方程式の解が四則演算とべき根で表現できることを証明できます。

まず、上記の可解列とガロア対応53B)になっている「体の拡大列」は何かです。具体的には \(H\) の固定体は何かですが、それは \(\bs{Q}(\theta)\) です。実際、
 \(\sg(\theta)=\theta,\:\:\sg^2(\theta)=\theta\)
なので、\(H\) のすべての元は \(\bs{Q}(\theta)\) の元を固定します。また、
 \(\tau(\theta)=-\theta\)
なので、\(\tau\)(および \(\sg\tau,\:\sg^2\tau\))は \(\bs{Q}(\theta)\) の元 を固定しません。従って、\(H\) の固定体は \(\bs{Q}(\theta)\) です。つまり、\(\bs{L}=\bs{Q}(\al,\beta,\gamma)\) と書くと、

 \(G\:\sp\:H\:\)\(\:\sp\:\{\:e\:\}\)
 \(\bs{Q}\:\subset\:\bs{Q}(\theta)\:\)\(\:\subset\:\bs{L}\)

というガロア対応になっています。

次に体の拡大次元を検証します。まず、\(|G|=6\) なので、次数と位数の同一性52B)により、\(\bs{L}/\bs{Q}\) の拡大次数は、
 \([\:\bs{L}:\bs{Q}\:]=6\)
です。\(\bs{Q}(\theta)\) は \(\bs{Q}\) 上の既約な2次方程式、
 \(x^2-D=0\)
の解である \(\theta\) で \(\bs{Q}\) を単拡大した体なので、単拡大体の基底の定理(33F)により、
 \([\:\bs{Q}(\theta):\bs{Q}\:]=2\)
です。そうすると、拡大次数の連鎖律33H)により、
 \([\:\bs{L}:\bs{Q}\:]=[\:\bs{L}:\bs{Q}(\theta)\:]\cdot[\:\bs{Q}(\theta):\bs{Q}\:]\)
 \([\:\bs{L}:\bs{Q}(\theta)\:]=3\)
となるはずです。\([\:\bs{L}:\bs{Q}(\theta)\:]=3\) であることを、具体的な体の拡大の様子を検証することで確かめます。2つのことを証明します。

\(\bs{L}=\bs{Q}(\al,\beta,\gamma)\) とするとき、\(\bs{Q}(\theta,\al)=\bs{L}\) である。

[証明]

\(\theta=(\al-\beta)(\beta-\gamma)(\gamma-\al)\) だから、\(\theta\) は \(\al,\:\beta,\:\gamma\) で表現されている。従って
 \(\bs{Q}(\theta,\al)\:\subset\:\bs{Q}(\al,\beta,\gamma)\)
である。この逆である、
 \(\bs{Q}(\al,\beta,\gamma)\:\subset\:\bs{Q}(\theta,\al)\)
であることを証明する。そのためには \(\beta,\:\gamma\) が「有理数と \(\theta,\:\al\) の四則演算」で表現できることを示せばよい。根と係数の関係により、
 \(\beta+\gamma=-\al\)
 \((\br{G})\)
 \(\beta\gamma=-\dfrac{q}{\al}\)
である。これを利用して \(\theta\) の定義式を変形すると、
\(\begin{eqnarray}
&&\:\:\theta=&(\al-\beta)(\beta-\gamma)(\gamma-\al)\\
&&&=(\beta-\gamma)(-\al^2+(\beta+\gamma)\al-\beta\gamma)\\
&&&=(\beta-\gamma)\left(-\al^2-\al^2+\dfrac{q}{\al}\right)\\
&&&=(\beta-\gamma)\dfrac{-2\al^3+q}{\al}\\
\end{eqnarray}\)
となり、
 \(\beta-\gamma=\dfrac{\al\theta}{q-2\al^3}\)
 \((\br{H})\)
である。\((\br{G})\) 式と \((\br{H})\) 式は \(\beta\) と \(\gamma\) についての連立1次方程式なので解が求まり、\(\beta\) と \(\gamma\) は \(\al,\:\theta,\:q\) の四則演算で表現できる。従って、
 \(\bs{Q}(\al,\beta,\gamma)\:\subset\:\bs{Q}(\theta,\al)\)
であり、\(\bs{Q}(\theta,\al)\:\subset\:\bs{Q}(\al,\beta,\gamma)\) と合わせて、
 \(\bs{Q}(\theta,\al)=\bs{Q}(\al,\beta,\gamma)\)
である。[証明終]

\(x^3+px+q\) は \(\bs{\bs{Q}(\theta)}\) 上の既約多項式である。

[証明]

\(\bs{Q}\) 上の既約な3次方程式 \(x^3+px+q=0\) の解 \(\al\) による \(\bs{Q}\) の単拡大体 \(\bs{Q}(\al)\) を考えると、単拡大体の基底の定理(33F)により、
 \([\:\bs{Q}(\al):\bs{Q}\:]=3\)
である。従って \(\al\notin\bs{Q}(\theta)\) である。なぜなら、もし \(\al\in\bs{Q}(\theta)\) なら \(\bs{Q}(\theta)\) の次元は \(3\) 以上になるが、\([\:\bs{Q}(\theta):\bs{Q}\:]=2\) なので矛盾が生じるからである。同様に、\(\beta,\:\gamma\notin\bs{Q}(\theta)\) である。\(x^3+px+q\) は、
 \(x^3+px+q=(x-\al)(x-\beta)(x-\gamma)\)
と表されるから、\(x^3+px+q\) は \(\bs{Q}(\theta)\) 上では因数分解できない。つまり \(x^3+px+q\) は \(\bs{Q}(\theta)\) 上の既約多項式である。[証明終]


以上により、

\(\bs{L}=\bs{Q}(\al,\beta,\gamma)\) は、\(\bs{\bs{Q}(\theta)}\) 上の既約な3次方程式 \(x^3+px+q=0\) の解の一つである \(\al\) を \(\bs{Q}(\theta)\) に添加した単拡大体、\(\bs{L}=\bs{Q}(\theta,\al)\) であり、その拡大次数は \([\:\bs{L}:\bs{Q}(\theta)\:]=\:3\) である

ことが検証できました。これを踏まえて、3次方程式が解ける理由をガロア理論で説明します。ガロア対応である、

 \(G\:\sp\:H\:\)\(\:\sp\:\{\:e\:\}\)
 \(\bs{Q}\:\subset\:\bs{Q}(\theta)\:\)\(\:\subset\:\bs{L}\)

を2つの部分に分けます。

 \(\bs{Q}\:\subset\:\bs{Q}(\theta)\) 

\(\mr{Gal}(\bs{Q}(\theta)/\bs{Q})\cong G/H\cong C_2\) であり、\(\bs{Q}(\theta)/\bs{Q}\) は巡回拡大で、拡大次数は \(2\) です。\(1\) の原始2乗根は \(-1\) であり、\(\bs{Q}\) に含まれています。従って \(\bs{Q}(\theta)/\bs{Q}\) はべき根拡大です。具体的には、
 \(x^2-D=0\:\:(D\in\bs{Q})\)
  \(D=-4p^3-27q^2\)
の解が \(\theta\) であり、
 \(\theta=\sqrt{D}=\sqrt{-4p^3-27q^2}\)
です。これはレゾルベントを持ち出すまでもなく分かります。

 \(\bs{Q}(\theta)\:\subset\:\bs{L}\) 

\(\mr{Gal}(\bs{L}/\bs{Q}(\theta))=H\cong C_3\) であり、\(\bs{L}/\bs{Q}(\theta)\) は巡回拡大で、拡大次数は \(3\) です。また \(\bs{L}\) は \(\bs{Q}(\theta)\) 上の既約な3次方程式 \(x^3+px+q=0\) の解の一つである \(\al\) を \(\bs{Q}(\theta)\) に添加した単拡大体で、\(\bs{L}=\bs{Q}(\theta,\al)\) でした。

\(\bs{Q}(\theta)\) には(一般には)\(1\) の原始3乗根が含まれていません。そこで、\(\bs{L}/\bs{Q}(\theta)\) の体の拡大の代わりに、\(\bs{L}(\omega)/\bs{Q}(\omega,\theta)\) という拡大を考えます。
 \(\bs{L}(\omega)=\bs{Q}(\omega,\theta,\al)\)
 \([\:\bs{Q}(\omega,\theta,\al):\bs{Q}(\omega,\theta)\:]=3\)
 \((\br{I})\)
です。

方程式によっては \(\theta\in\bs{Q}(\omega)\) の場合があります。たとえば、\(p=0\) だと、
\(\theta=\sqrt{-27q^2}=3\sqrt{3}i\cdot q\)
ですが、\(\omega=\dfrac{1}{2}(-1\pm\sqrt{3}i)\) なので、\(\theta\in\bs{Q}(\omega)\) です。この場合は、
\(\bs{Q}(\omega,\theta)=\bs{Q}(\omega)=\bs{Q}(\theta)\)
ですが、\((\br{I})\) 式は成り立ちます。

レゾルベント \(S,\:T\) を導入して \(S^3\) と \(T^3\) を求めます。計算は、方程式 \(x^3-3x+1=0\) のときと全く同じです。つまり、

 \(S=\al+\omega^2\beta+\omega\gamma\)
 \((\br{B})\)
 \(T=\al+\omega\beta+\omega^2\gamma\)
 \(ST=-3p\)
 \((\br{D})\)
 \(S^3+T^3=-27q\)

 \(\al=\dfrac{1}{3}(S+T)\)
 \(\beta=\dfrac{1}{3}(\omega S+\omega^2T)\)
 \((\br{C})\)
 \(\gamma=\dfrac{1}{3}(\omega^2S+\omega T)\)

 \(X^2+27qX-27p^3=0\)
 \((\br{F})\)
 の2つの解が \(S^3\) と \(T^3\)

です。方程式 \(x^3-3x+1=0\) の場合、\(\bs{L}(\omega)\) は \(\bs{Q}(\omega)\) からの巡回拡大でしたが、\(x^3-3p+1q=0\) では \(\bs{Q}(\omega,\theta)\) からの巡回拡大であり、ガロア群が位数 \(3\) の巡回群であるという点では全く同じなのです。

\((\br{F})\) 式から \(X\) を求めると、
\(\begin{eqnarray}
&&\:\:X&=\dfrac{1}{2}\left(-27q\pm\sqrt{27^2q^2+27\cdot4p^3}\right)\\
&&&=\dfrac{1}{2}\left(-27q\pm\sqrt{-27\theta^2}\right)\\
&&&=\dfrac{1}{2}(-27q\pm3\sqrt{3}i\cdot\theta)\\
\end{eqnarray}\)
となるので、
 \(S^3=\dfrac{1}{2}(-27q+3\sqrt{3}i\cdot\theta)\)
 \(T^3=\dfrac{1}{2}(-27q-3\sqrt{3}i\cdot\theta)\)
となります。\(S^3\) と \(T^3\) は逆でもかまいません。\(\omega\) は \(1\) の原始3乗根で、
 \(\omega=\dfrac{1}{2}(-1\pm\sqrt{3}i)\)
のどちらかです。従って、
 \(\sqrt{3}i\in\bs{Q}(\omega,\theta)\)
です。つまり、
 \(S^3,\:\:T^3\in\bs{Q}(\omega,\theta)\)
であることがわかりました。従って、\(S,\:T\) は \(\bs{Q}(\omega,\theta)\) 上の3次方程式、\(x^3-a=0\:\:(a\in\bs{Q}(\omega,\theta))\) の解ということになり、\(\bs{Q}(\omega,\theta,\:S)/\bs{Q}(\omega,\theta)\) の体の拡大を考えると、
 \([\:\bs{Q}(\omega,\theta,\:S):\bs{Q}(\omega,\theta)\:]=3\)
 \((\br{J})\)
です。\(\bs{Q}(\omega,\theta,\:S)\) は \(\bs{Q}(\omega,\theta,\:T)\) としても同じことです。ここで、

 \(\bs{Q}(\omega,\theta,\:S)=\bs{Q}(\omega,\theta,\:\al)\)

であることが次のようにして分かります。つまり、\(\bs{Q}(\omega,\theta)\) 上の既約な3次方程式 \(x^3+px+q=0\) の解が \(\al,\:\beta,\:\gamma\) であり、\((\br{B})\) 式により \(S\) は \(\al,\:\beta,\:\gamma,\:\omega\) の四則演算で表されているので、
 \(S\in\bs{Q}(\omega,\theta,\al,\beta,\gamma)\)
であり、また、
 \(\bs{Q}(\omega,\theta,\al,\beta,\gamma)=\bs{Q}(\omega,\theta,\al)\)
だったので、
 \(S\in\bs{Q}(\omega,\theta,\al)\)
です。このことから、
 \(\bs{Q}(\omega,\theta,\:S)\subset\bs{Q}(\omega,\theta,\:\al)\)
 \((\br{K})\)
です。\((\br{I})\) 式と \((\br{J})\) 式により、\(\bs{Q}(\omega,\theta,\:S)\) と \(\bs{Q}(\omega,\theta,\:\al)\) の次元は等しく、かつ \((\br{K})\) 式の関係があるので、体の一致の定理(33I)により2つの体は一致し、
 \(\bs{Q}(\omega,\theta,\:S)=\bs{Q}(\omega,\theta,\:\al)\)
です。


この説明は「7.3 べき根拡大の十分条件」の証明に従いましたが、3次方程式の場合は、\((\br{C})\) 式と \((\br{D})\) 式により、\(\al,\:\beta,\:\gamma\) が \(S\) と \(\omega\) の四則演算で表現できます。従って、
 \(\bs{Q}(\omega,\theta,\al,\beta,\gamma)\subset\bs{Q}(\omega,\theta,S)\)
 \(\bs{Q}(\omega,\theta,\al)\subset\bs{Q}(\omega,\theta,S)\)
であり、
 \(\bs{Q}(\omega,\theta,S)\subset\bs{Q}(\omega,\theta,\al)\)
と合わせて
 \(\bs{Q}(\omega,\theta,\:S)=\bs{Q}(\omega,\theta,\:\al)\)
である、とするのが簡便な説明になります。


以上をまとめると、

\(\bs{Q}(\omega,\theta)\) 上の3次方程式、\(x^3-a=0\:\:(a\in\bs{Q}(\omega,\theta))\) の解の一つ、\(S\) を \(\bs{Q}(\omega,\theta)\) に添加したべき根拡大体が \(\bs{Q}(\omega,\theta,\al)=\bs{L}(\omega)\) である

となり、体に \(\bs{\omega}\) が含まれる前提で、巡回拡大はべき根拡大であることが検証できました。ここから、\(\bs{L}(\omega)\) を \(\bs{Q}\) の拡大体として、方程式の係数 \(p,\:q\) を使って、できるだけ簡潔な形で表してみます。
\(\begin{eqnarray}
&&\:\:\theta&=\sqrt{-4p^3-27q^2}\\
&&&=6\cdot\sqrt{3}i\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}\\
\end{eqnarray}\)
ですが、\(\sqrt{3}i\in\bs{Q}(\omega)\) なので、
 \(\bs{Q}(\omega,\theta)=\bs{Q}\left(\omega,\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}\right)\)
と表せます。また、
\(\begin{eqnarray}
&&\:\:X^3&=\dfrac{1}{2}\left(-27q+\sqrt{27^2q^2+27\cdot4p^3}\right)\\
&&&=\dfrac{1}{2}\left(-27q+27\cdot2\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}\right)\\
&&&=27\left(-\dfrac{q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}\right)\\
\end{eqnarray}\)
なので、

 \(S=3\cdot\sqrt[3]{-\dfrac{q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\)
 \(T=3\cdot\sqrt[3]{-\dfrac{q}{2}-\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\)

が \(S,\:T\) です。\(\sqrt[3]{\phantom{I}\cd\phantom{I}}\) は3乗して \(\cd\) になる数の意味です。従って、\(S\) の選び方は3通りですが、\(S\) を一つに決めると、
 \(ST=-3p\)
が成り立つように \(T\) を選ぶ必要があります。以上の \(S\) を用いて \(\bs{L}(\omega)\) を表すと、

 \(\bs{L}(\omega)\)
  \(=\bs{Q}(\omega,\theta,\al,\beta,\gamma)=\bs{Q}(\omega,\theta,\al)=\bs{Q}(\omega,\theta,S)\)
  \(=\bs{Q}\left(\omega,\:\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}},\:\sqrt[3]{-\dfrac{q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\right)\)

となります。この式が意味するところは、

\(\dfrac{q^2}{4}+\dfrac{p^3}{27}\) が有理数なので、\(\bs{L}(\omega)\) は \(\bs{Q}(\omega)\) からのべき根拡大を、\(\sqrt{\phantom{A}}\) と \(\sqrt[3]{\phantom{A}}\) の2回繰り返したものである

ということです。べき根拡大の出発点は 有理数に \(\omega\) を添加した体です。「7.1 1の原始n乗根」で証明したように、原始\(n\)乗根はべき根で表現可能であり(71A)、もちろん \(\omega\) もそうです。これが3次方程式が解ける原理(一般化するとガロア群が可解群である方程式が解ける原理)です。補足すると、\(p=0\) のときは、
 \(\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}=\pm\dfrac{q}{2}\in\bs{Q}\)
なので、べき根拡大は \(\sqrt[3]{\phantom{A}}\) の1回だけになります。


さらに、ここまでの計算で3次方程式の解も求まりました。解は、

\(\left\{
\begin{array}{l}
\begin{eqnarray}
&&\al=\dfrac{1}{3}(S+T)&\\
&&\beta=\dfrac{1}{3}(\omega S+\omega^2T)&\\
&&\gamma=\dfrac{1}{3}(\omega^2S+\omega T)&\\
\end{eqnarray}
\end{array}\right.\)

であり、記号を、
 \(S=3s\)
 \(T=3t\)
に置き換えると、

3次方程式の解の公式

\(x^3+px+q=0\) の3つの解を \(\al,\:\beta,\:\gamma\) とする。

\(\left\{
\begin{array}{l}
\begin{eqnarray}
&&\al=s+t&\\
&&\beta=\omega s+\omega^2t&\\
&&\gamma=\omega^2s+\omega t&\\
\end{eqnarray}
\end{array}\right.\)

  \(s=\sqrt[3]{-\dfrac{q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\)
  \(t=\sqrt[3]{-\dfrac{q}{2}-\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\)
  \(st=-\dfrac{p}{3}\)

が、3次方程式の解の公式です。


3次方程式の解による体の拡大を振り返ってみます。\(\bs{Q}\) 上の既約な方程式 \(x^3+px+q=0\) の根を \(\al,\:\beta,\:\gamma\) とし、\(\bs{Q}\) の最小分解体 を \(\bs{L}=\bs{Q}(\al,\beta,\gamma)\)、ガロア群を \(G=\mr{Gal}(\bs{L}/\bs{Q})\) とすると、
 \(\bs{Q}\:\subset\:\bs{Q}(\theta)\:\:\)\(\:\subset\:\bs{L}\)
 \(G\:\sp\:H\:\:\:\)\(\:\sp\:\{\:e\:\}\)
のガロア対応が成り立ちます。\(\bs{L}/\bs{Q}\) の拡大次数は \(6\)(\(|G|=6\))です。この、
 \(\bs{Q}\:\subset\:\bs{Q}(\theta)\:\subset\:\bs{L}\)
という体の拡大列で、\(\bs{Q}\:\subset\:\bs{Q}(\theta)\) のところはべき根拡大ですが、\(\bs{Q}(\theta)\:\subset\:\bs{L}\) は、\(\omega\in\bs{Q}(\theta)\) の場合を除き、べき根拡大ではありません。しかし、

 \(\bs{Q}(\omega)\:\subset\:\bs{Q}(\omega,\theta)\:\subset\:\bs{L}(\omega)\)

なら、必ず、すべてがべき根拡大になります。従って、3次方程式の解は \(\bs{Q}(\omega)\) の元である「有理数と \(\omega\)」の四則演算・べき根で記述できます。

\(\omega\) は \(x^2+x+1=0\) の解なので、\([\:\bs{Q}(\omega):\bs{Q}\:]=2\) です。従って、拡大次数の連鎖律33H)により、\(\omega\notin\bs{Q}(\theta)\) の条件で、
 \([\:\bs{L}(\omega):\bs{Q}\:]=12\)
です。これは、\(\bs{Q}\) 上の多項式 \((x^3+px+q)(x^2+x+1)\) の最小分解体が \(\bs{L}(\omega)\) なので、\(\bs{Q}\) からの拡大次数は \(12\) であるとも言えます。3次方程式の「解」は、あくまで \(\bs{Q}\) の \(6\)次拡大体 \(\bs{L}=\bs{Q}(\al,\beta,\gamma)\) の中にありますが、「べき根で表された解」は \(\bs{Q}\) の \(12\)次拡大体 \(\bs{L}(\omega)\) の中にあるのです。

一見、矛盾しているようですが、そうではありません。ある代数拡大体 \(\bs{K}\) があったとして、\(a\) を \(\bs{K}\) の元とし、\(1\) の原始3乗根の一つを \(\omega\) とします。3次方程式、
 \(x^3-a=0\:\:(a\in\bs{K})\)
は3つの解をもちます。そのうちのどれか一つを \(\sqrt[3]{a}\) と定義すると、3つの解(べき根)は、

 \(\sqrt[3]{a},\:\:\sqrt[3]{a}\:\omega,\:\:\sqrt[3]{a}\:\omega^2\)

です。\(\sqrt[3]{a}\) では \(\omega\) が不要なように見えますが、それは表面上のことで、3つの解は、

 \(\sqrt[3]{a}\:\omega,\:\:\sqrt[3]{a}\:\omega^2,\:\:\sqrt[3]{a}\:\omega^3\)

であるというのが正しい認識です。つまり \(\bs{\omega}\) は3つのべき根の関係性を規定していて、\(\sqrt[3]{a}\cdot\omega^i\:\:(i=1,2,3)\) という "ペアの形" によって3つの区別が可能になり、数式としての整合性が保てます。\(\sqrt[3]{\phantom{A}}\) という "曖昧さ" がある記号を用いる限り、\(\omega\) という、曖昧さを解消する "助手" が必然的に登場するのです。

「7.7 巡回拡大はべき根拡大」終わり 
「7.可解性の十分条件」は次回に続く


nice!(0) 

No.357 - 高校数学で理解するガロア理論(4) [科学]

\(\newcommand{\bs}[1]{\boldsymbol{#1}} \newcommand{\mr}[1]{\mathrm{#1}} \newcommand{\br}[1]{\textbf{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\sb}{\subset} \newcommand{\sp}{\supset} \newcommand{\al}{\alpha} \newcommand{\sg}{\sigma}\newcommand{\cd}{\cdots}\)
 
6.可解性の必要条件 
 


6.1 可解群


正規部分群の概念、および剰余群と巡回群を使って「可解群」を定義します。可解群は純粋に群の性質として定義できますが、方程式の可解性と結びつきます。


可解群の定義:61A)

群 \(G\) から 単位元 \(e\) に至る部分群の列、

\(G=H_0\:\sp H_1\sp\cd\sp H_i\sp H_{i+1}\sp\cd\sp H_k=\{\:e\:\}\)

があって、\(H_{i+1}\) は \(H_i\) の正規部分群であり、剰余群 \(H_i/H_{i+1}\) が巡回群であるとき、\(G\) を可解群(solvable group)と言う。

\(H_{i+1}\) が \(H_i\) の正規部分群であるとき、\(H_i\) を正規列と言う。加えて、\(H_i/H_{i+1}\) が巡回群のとき、\(H_i\) を可解列という。



巡回群は可解群:61B)

巡回群は可解群である。また、巡回群の直積も可解群である。


[証明]

群 \(G\) を巡回群とし、\(G\) から 単位元 \(e\) に至る部分群の列として、
 \(G=H_0\:\sp\:H_1=\{\:e\:\}\)
をとる。\(H_1=\{\:e\:\}\) は \(H_0=G\) の正規部分群である。また、
 \(H_0/H_1\:\cong\:H_0\:(=G)\)
であり、\(G\) は巡回群だから、\(H_0/H_1\) は巡回群である。従って \(G\) は可解群である。

3つの巡回群の直積 \(G\) で考える。\(G\) を、
\(\begin{eqnarray}
&&\:\:G&=\bs{Z}/k\bs{Z}\times\bs{Z}/m\bs{Z}\times\bs{Z}/n\bs{Z}\\
&&&=\{(a,b,c)\:|\:a\in\bs{Z}/k\bs{Z},\:b\in\bs{Z}/m\bs{Z},\:c\in\bs{Z}/n\bs{Z}\}\\
\end{eqnarray}\)
とする。このとき、
\(\begin{eqnarray}
&&\:\:&H_1&=\{(a,b,0)\:|\:a\in\bs{Z}/k\bs{Z},\:b\in\bs{Z}/m\bs{Z}\}\\
&&&H_2&=\{(a,0,0)\:|\:a\in\bs{Z}/k\bs{Z}\}\\
&&&\{e\}&=\{(0,0,0)\}\\
\end{eqnarray}\)
とおくと、
 \(G\:\sp\:H_1\:\sp\:H_2\:\sp\:\{e\}\)
となる。巡回群は可換群であり、巡回群の直積 \(G\) も可換群である。従って、\(G\) の部分群である \(H_1,\:H_2\) も可換群であり、すなわち \(G\) の正規部分群である(41F)。

\(G\) の任意の2つの元を
 \(g=(g_a,\:g_b,\:g_c)\)
 \(h=(h_a,\:h_b,\:h_c)\)
とする。剰余類 \(g+H_1\) と \(h+H_1\) を考える。\((g_a,0,0)+H_1=H_1\)、\((0,g_b,0)+H_1=H_1\) だから、\((g_a,g_b,0)+H_1=H_1\) である。また同様に\((h_a,h_b,0)+H_1=H_1\) である。従って、\(g_c=h_c\) なら、\(g_a\)、\(g_b\)、\(h_a\)、\(h_b\) の値に関わらず \(g+H_1=h+H_1\) である。逆に、\(g_c\neq h_c\) なら \(g+H_1\neq h+H_1\) である。このことから剰余類の代表元(41E)として、\((0,0,0)\)、\((0,0,1)\)、\(\cd\)、\((0,0,n-1)\) の \(n\)個をとることができる。つまり、
\(\begin{eqnarray}
&&\:\:G/H_1=\{&(0,0,0)+H_1,\\
&&&(0,0,1)+H_1,\\
&&&(0,0,2)+H_1,\\
&&& \vdots\\
&&&(0,0,n-1)+H_1\}\\
\end{eqnarray}\)
である。これは \((0,0,1)+H_1\) を生成元とする位数 \(n\) の巡回群である。まったく同様の議論により、
\(\begin{eqnarray}
&&\:\:H_1/H_2=\{&(0,0,0)+H_2,\\
&&&(0,1,0)+H_2,\\
&&&(0,2,0)+H_2,\\
&&& \vdots\\
&&&(0,m-1,0)+H_2\}\\
\end{eqnarray}\)
であり、\(H_1/H_2\) は \((0,1,0)+H_2\) を生成元とする位数 \(m\) の巡回群である。以上により、
 \(G=H_0\:\sp\:H_1\:\sp\:H_2\:\sp\:H_3=\{e\}\)
は、正規列であり、\(H_i/H_{i+1}\) が巡回群なので、\(G\) は可解群である。この議論は \(G\) が\(4\)個以上の巡回群の直積の場合でも全く同様に成り立つ。つまり、巡回群の直積は可解群である。[証明終]


可解群の部分群は可解群:61C)

可解群の部分群は可解群である。


[証明]

可解群を \(G\) とすると、可解群の定義により、

 \(G=H_0\sp H_1\sp H_2\sp\cd H_{n-1}\sp H_n=\{e\}\)

という列で、\(H_{i+1}\) が \(H_i\) の正規部分群であり、\(H_i/H_{i+1}\) が巡回群のものが存在する。

ここで、\(G\) の任意の部分群を \(N\) としたとき、

 \(N=N\cap H_0\sp N\cap H_1\sp N\cap H_2\sp\cd N\cap H_{n-1}\sp N\cap H_n=\{e\}\)

という集合の列を考える。部分群の共通部分は部分群の定理(41D)により、\(N\cap H_i\:(0\leq i\leq n)\) は \(G\) の部分群の列である。と同時に、これが可解列であることを以下で証明する。

列の \(N\cap H_{i-1}\sp N\cap H_i\) の部分を取り出して考える。\(H_i\) は \(H_{i-1}\) の正規部分群なので、\(H_{i-1}\) の任意の元 \(x\) について \(xH_i=H_ix\) が成り立つ。

\(N\cap H_{i-1}\) の任意の元を \(y\) とすると、\(y\in N\) かつ \(y\in H_{i-1}\) であるが、\(y\in N\) なので \(yN=Ny=N\) である。また \(y\in H_{i-1}\) なので、正規部分群の定義により、\(yH_i=H_iy\) が成り立つ。ゆえに、
 \(y(N\cap H_i)=yN\cap yH_i=Ny\cap H_iy=(N\cap H_i)y\)
となり、定義によって \(\bs{N\cap H_i}\)\(\bs{N\cap H_{i-1}}\) の正規部分群である。

次に第2同型定理43B)によると、\(N\) が \(G\) の部分群、\(H\) が \(G\) の正規部分群のとき、
 \(N/(N\cap H)\:\cong\:NH/H\)
が成り立つ。\(N\) を \(N\cap H_{i-1}\) とし、\(H\) を \(H_i\) として定理を適用すると、

 \(N\cap H_{i-1}/((N\cap H_{i-1})\cap H_i)\:\cong\:(N\cap H_{i-1})H_i/H_i\)
 \((\br{A})\)

となる。ここで、\(H_i\:\subset\:H_{i-1}\) なので、\((N\cap H_{i-1})\cap H_i=N\cap H_i\) である。従って、
 \((\br{A})\) 式の左辺 \(=\:(N\cap H_{i-1})/(N\cap H_i)\)
 \((\br{A}\,')\)
となる。また、
 \((N\cap H_{i-1})\:\subset\:H_{i-1}\)
 \((\br{B})\)
は常に成り立つ。さらに、\(H_i\:\subset\:H_{i-1}\) だから、この式に左から \(H_{i-1}\) をかけて、
 \(H_{i-1}H_i\:\subset\:H_{i-1}H_{i-1}\)
 \(H_{i-1}H_i\:\subset\:H_{i-1}\)
 \((\br{C})\)
が成り立つ。\((\br{B})\) 式に右から \(H_i\) をかけると、
 \((N\cap H_{i-1})H_i\:\subset\:H_{i-1}H_i\)
となるが、これと \((\br{C})\) 式を合わせると、
 \((N\cap H_{i-1})H_i\:\subset\:H_{i-1}\)
となる。従って、\((N\cap H_{i-1})H_i\) と \(H_{i-1}\) の \(H_i\) による剰余類を考えると、
 \((N\cap H_{i-1})H_i/H_i\:\subset\:H_{i-1}/H_i\)
の関係にある。これで、
 \((\br{A})\) 式の右辺 \(=\:H_{i-1}/H_i\) の部分群
 \((\br{A}\,'')\)
であることが分かった。

以上の \((\br{A})\:\:(\br{A}\,')\:\:(\br{A}\,'')\) をあわせると、

 \((N\cap H_{i-1})/(N\cap H_i)\:\cong\:H_{i-1}/H_i\) の部分群

である。\(G\) は可解群なので \(H_{i-1}/H_i\) は巡回群である。巡回群の部分群は巡回群なので、それと同型である \(\bs{(N\cap H_{i-1})/(N\cap H_i)}\) は巡回群である。まとめると、

 \(N\cap H_i\) は \(N\cap H_{i-1}\) の正規部分群
 \((N\cap H_{i-1})/(N\cap H_i)\) は巡回群

となる。このことは \(1\leq i\leq n\) のすべてで成り立つから、\(N\cap H_0\:=\:N\cap G\:=\:N\) は可解群である。つまり、可解群 \(G\) の任意の部分群 \(N\) は可解群である。[証明終]


可解群の像は可解群:61D)

可解群の準同型写像による像は可解群である。

このことより、
 可解群の剰余群は可解群
であることが分かる。なぜなら、群 \(G\) の部分群を \(N\) とすると、\(G\) から \(G/N\) への自然準同型、つまり \(x\in G\) として、
 \(x\:\longmapsto\:xN\)
の準同型写像を定義できるからである。


[証明]

可解群を \(G\) とすると、可解群の定義により、
 \(G=H_0\sp H_1\sp\:H_2\sp\cd H_{n-1}\sp H_n=\{e\}\)
という列で、\(H_i\) が \(H_{i-1}\) の正規部分群であり、剰余群 \(H_{i-1}/H_i\) が巡回群の列(=可解列)が存在する。群 \(G\) に作用する準同型写像を \(\sg\) とすると、上記の可解列の \(\sg\) による像、
 \(\sg(G)=\sg(H_0)\sp\sg(H_1)\sp\sg(H_2)\sp\cd\sg(H_{n-1})\sp\sg(H_n)\)
 \((\br{D})\)
が正規列になっていることを以下に示す。

\(\sg\) による像の列から \(\sg(H_{i-1})\sp\sg(H_i)\) を取り出して考える。\(\sg\) を \(H_{i-1}\) から \(\sg(H_{i-1})\) への写像と考えると、\(\sg(H_{i-1})\) は \(\sg\) による \(H_{i-1}\) の像なので、\(\sg\) は全射である。従って、\(H_{i-1}\) の元 \(h\) を選ぶことによって \(\sg(h)\) で \(\sg(H_{i-1})\) の全ての元を表すことができる。

\(\sg(H_{i-1})\) の任意の元を \(\sg(h)\) とおくと、
\(\begin{eqnarray}
&&\:\:\sg(h)\sg(H_i)&=\sg(hH_i)=\sg(H_ih)\\
&&&=\sg(H_i)\sg(h)\\
\end{eqnarray}\)
であるから、\(\sg(H_i)\) は \(\sg(H_{i-1})\) の正規部分群である。つまり \((\br{D})\) は正規列である。従って、\(\sg(H_{i-1})\) の \(\sg(H_i)\) による剰余類は群であり、剰余群 \(\sg(H_{i-1})/\sg(H_i)\) になる。

次に、剰余群 \(\sg(H_{i-1})/\sg(H_i)\) が巡回群であることを示す。\(H_{i-1}\) の任意の元を \(x\) とし、剰余群 \(H_{i-1}/H_i\) の元を \(xH_i\) で表す。\(H_{i-1}/H_i\) から \(\sg(H_{i-1})/\sg(H_i)\) への写像 \(f\) を、
 \(f\::\:xH_i\:\longmapsto\:\sg(x)\sg(H_i)\)
と定める。もし、剰余群 \(H_{i-1}/H_i\) の元が \(xH_i\) と \(yH_i\:(x,y\in H_{i-1})\) という異なる表現を持っているとすると、
 \(xH_i=yH_i\)
 \(\sg(xH_i)=\sg(yH_i)\)
 \(\sg(x)\sg(H_i)=\sg(y)\sg(H_i)\)
であるが、\(f\) の定義によって、
 \(f(xH_i)=\sg(x)\sg(H_i)\)
 \(f(yH_i)=\sg(y)\sg(H_i)\)
であり、異なる表現の \(f\) による写像先は一致する。従って \(f\) は2つの剰余群の間の写像として矛盾なく定義されている。また \(f\) は、
\(\begin{eqnarray}
&&f(xH_iyH_i)&=f(xyH_iH_i)=f(xyH_i)\\
&&&=\sg(xy)\sg(H_i)=\sg(x)\sg(y)\sg(H_i)\\
&&&=\sg(x)\sg(y)\sg(H_iH_i)=\sg(x)\sg(yH_iH_i)\\
&&&=\sg(x)\sg(H_iyH_i)=\sg(x)\sg(H_i)\sg(yH_i)\\
&&&=\sg(xH_i)\sg(yH_i)=\sg(x)\sg(H_i)\sg(y)\sg(H_i)\\
&&&=f(xH_i)f(yH_i)\\
\end{eqnarray}\)
を満たすが、この式は \(xH_i\) と \(yH_i\) が剰余群 \(H_{i-1}/H_i\) の異なる元を表現していても成り立つ。従って \(f\) は準同型写像である(=\(\:\br{①}\:\))。また、\(f\) は \(H_{i-1}/H_i\) から \(\sg(H_{i-1})/\sg(H_i)\) への写像で、
 \(f\::\:xH_i\:\longmapsto\:\sg(x)\sg(H_i)\)
と定義されたが、\(\sg(xH_i)=\sg(x)\sg(H_i)\) だから \(f\)は全射であり、
 \(\mr{Im}\:f\:=\:\sg(H_{i-1})/\sg(H_i)\)
である(=\(\:\br{②}\:\))。\(\br{①}\) と \(\br{②}\)、および準同型定理43A)により、
 \((H_{i-1}/H_i)/\mr{Ker}\:f\:=\:\sg(H_{i-1})/\sg(H_i)\)
である。\(H_{i-1}/H_i\) は巡回群なので、巡回群の剰余群は巡回群の定理(41H)により、\((H_{i-1}/H_i)/\mr{Ker}\:f\) は巡回群である。従って、それと同型である \(\sg(H_{i-1})/\sg(H_i)\) も巡回群である。

結局、\((\br{D})\) は正規列であると同時に \(\sg(H_{i-1})/\sg(H_i)\) が巡回群なので、\(\sg(G)\) は可解群である。[証明終]


6.2 巡回拡大


巡回拡大
巡回拡大の定義:62A)

\(\bs{Q}\) のガロア拡大を \(\bs{K}\) とする。\(\mr{Gal}(\bs{K}/\bs{Q})\) が巡回群のとき、\(\bs{K}/\bs{Q}\) を巡回拡大(cyclic extension)と言う。


累巡回拡大
累巡回拡大の定義:62B)

\(\bs{Q}\) の拡大体を \(\bs{K}\) とする。

\(\bs{Q}=\bs{K}_0\subset\bs{K}_1\subset\cd\subset\bs{K}_i\subset\bs{K}_{i+1}\subset\cd\subset\bs{K}_k=\bs{K}\)

となる拡大列があって(\(k > 1\))、\(\bs{K}_{i+1}/\bs{K}_i\:(0\leq i < k)\) が巡回拡大のとき、\(\bs{K}/\bs{Q}\) は累巡回拡大であると言う。ただし、\(\bs{\bs{K}/\bs{Q}}\) が累巡回拡大だとしても、\(\bs{\bs{K}/\bs{Q}}\) がガロア拡大であるとは限らない


\(\bs{K}/\bs{Q}\) が累巡回拡大だとしてもガロア拡大であるとは限りません。たとえばシンプルな例で考えてみると、
 \(\al=\sqrt{\sqrt{2}+1}\)
という代数的数があったとします。この式から \(\sqrt{\phantom{A}}\) を消去すると \(\al^4-2\al^2-1=0\) なので、\(\al\) の最小多項式 \(f(x)\) は、
 \(f(x)=x^4-2x^2-1\)
です。\(f(x)\) は、
 \(f(x)=(x^2-(\sqrt{2}+1))(x^2+(\sqrt{2}-1))\)
と変形できるので、方程式 \(f(x)=0\) の解は
 \(x=\pm\sqrt{\sqrt{2}+1},\:\:\pm i\sqrt{\sqrt{2}-1}\)
です。従って \(f(x)\) の最小分解体 \(\bs{L}\) は、
 \(\bs{L}=\bs{Q}(\sqrt{\sqrt{2}+1},\:i\sqrt{\sqrt{2}-1})\)
であり、また、
 \(\sqrt{\sqrt{2}+1}\cdot\sqrt{\sqrt{2}-1}=1\)
の関係があるので、
 \(\bs{L}=\bs{Q}(i,\:\al)\)
と表現できます。\(\bs{L}/\bs{Q}\) はガロア拡大です。

一方、
 \(\bs{K}=\bs{Q}(\al)\)
と定義すると、\(\bs{K}\) は \(f(x)=0\) の一つの解 \(\al\) だけによる単拡大体なので、\(\bs{K}/\bs{Q}\) はガロア拡大ではありません( \(\bs{Q}(\al)\neq\bs{Q}(i,\:\al)\) )。ここで、

 \(\bs{Q}\:\subset\:\bs{Q}(\sqrt{2})\:\subset\:\bs{Q}(\al)=\bs{K}\)

という体の拡大列を考えます。\(\bs{Q}\) 上の方程式 \(x^2-2=0\) の解は \(\pm\sqrt{2}\) なので、\(\bs{Q}(\sqrt{2})/\bs{Q}\) はガロア拡大です。また、ガロア群は、

 \(\mr{Gal}(\bs{Q}(\sqrt{2})/\bs{Q})=\{e,\:\sg\}\)
  \(\sg(\sqrt{2})=-\sqrt{2}\)
  \(\sg^2=e\)

なので巡回群であり、\(\bs{Q}(\sqrt{2})/\bs{Q}\) は巡回拡大です。

同様に、\(\bs{Q}(\sqrt{2})\) 上の方程式 \(x^2-(\sqrt{2}+1)=0\) の解は \(\pm\al\) で、\(\bs{Q}(\sqrt{2},\al)\) は \(\bs{Q}(\sqrt{2})\) の巡回拡大です。\(\sqrt{2}=\al^2-1\) なので、\(\bs{Q}(\sqrt{2},\al)=\bs{Q}(\al)\) であり、\(\bs{Q}(\al)/\bs{Q}(\sqrt{2})\) が巡回拡大となります。

結局、\(\bs{K}/\bs{Q}\) は \(\bs{Q}(\sqrt{2})/\bs{Q},\:\:\bs{Q}(\al)/\bs{Q}(\sqrt{2})\) という2つの巡回拡大の列で表されるので、定義(62B)により累巡回拡大です。しかしそうであっても、\(\bs{K}/\bs{Q}\) は ガロア拡大ではないのです。

これがもし \(\al=\sqrt{2}+\sqrt{3}\) だとすると、\(2\) も \(3\) も \(\bs{Q}\) の元なので、
 \(\bs{Q}\:\subset\:\bs{Q}(\sqrt{2})\:\subset\:\bs{Q}(\sqrt{2},\sqrt{3})=\bs{K}\)
の拡大列は累巡回拡大であり、かつ \(\bs{K}/\bs{Q}\) がガロア拡大です。


このように、\(\bs{K}/\bs{Q}\) が累巡回拡大だとしてもガロア拡大であるとは限らないのですが、もし \(\bs{K}/\bs{Q}\) が累巡回拡大でかつガロア拡大だとすると、\(\mr{Gal}(\bs{K}/\bs{Q})\) は可解群になります。それが、累巡回拡大と可解群を結びつける次の定理です。

累巡回拡大ガロア群の可解性
累巡回拡大ガロア群の可解性:62C)

\(\bs{Q}\) のガロア拡大を \(\bs{K}\)、そのガロア群を \(G\) とする。このとき、

① \(G\) が可解群である
② \(\bs{K}/\bs{Q}\) が累巡回拡大である

の2つは同値である。


[① \(\bs{\Rightarrow}\) ②の証明]

\(G\) が可解群であることを示す部分群の列と、それとガロア対応をする体の拡大列を、

\(G=H_0\sp H_1\sp H_2\sp\cd\sp H_i\sp H_{i+1}\sp\cd\sp H_k=\{e\}\)
\(\bs{Q}=\bs{F}_0\subset\bs{F}_1\subset\bs{F}_2\subset\cd\subset\bs{F}_i\subset\bs{F}_{i+1}\subset\cd\subset\bs{F}_k=\bs{K}\)

とする。\(G\) が可解群なので、\(H_{i+1}\) は \(H_i\) の正規部分群であり、\(H_{i+1}/H_i\:(0\leq i\leq k-1)\) は巡回群である。以降、\(H_i,\:H_{i+1}\) を取り出して考える。
 \(H_i\:\sp\:H_{i+1}\:\sp\:\{e\}\)
 \(\bs{F}_i\:\subset\:\bs{F}_{i+1}\:\subset\:\bs{K}\)
\(\bs{K}/\bs{Q}\) がガロア拡大なので、中間体からのガロア拡大の定理(52C)により、\(\bs{K}/\bs{F}_i\) もガロア拡大である。\(\bs{F}_i\) の固定群は \(H_i\) なので \(\mr{Gal}(\bs{K}/\bs{F}_i)=H_i\) である。同様に、\(\bs{K}/\bs{F}_{i+1}\) もガロア拡大であり、\(\mr{Gal}(\bs{K}/\bs{F}_{i+1})=H_{i+1}\) である。

ここで、\(H_{i+1}\) は \(H_i\) の正規部分群なので、正規性定理53C)により \(\bs{F}_{i+1}/\bs{F}_i\) はガロア拡大であり、そのガロア群は、
 \(\mr{Gal}(\bs{F}_{i+1}/\bs{F}_i)\cong H_i/H_{i+1}\)
となる。\(H_i/H_{i+1}\) は巡回群なので、それと同型の \(\mr{Gal}(\bs{F}_{i+1}/\bs{F}_i)\) も巡回群になる。従って、\(\bs{F}_{i+1}/\bs{F}_i\) は、「ガロア拡大で、かつ \(\mr{Gal}(\bs{F}_{i+1}/\bs{F}_i)\) が巡回群」なので、巡回拡大である。

以上が \(\bs{F}_i\:(0\leq i\leq k-1)\) で成り立つから、\(\bs{K}/\bs{Q}\) は累巡回拡大である。

[② \(\bs{\Rightarrow}\) ①の証明]

\(\bs{K}\) が \(\bs{Q}\) の累巡回拡大であることを示す体の拡大列と、それとガロア対応する \(G\) の部分群の列を、

\(\bs{Q}=\bs{F}_0\subset\bs{F}_1\subset\bs{F}_2\subset\cd\subset\bs{F}_i\subset\bs{F}_{i+1}\subset\cd\subset\bs{F}_k=\bs{K}\)
\(G=H_0\sp H_1\sp H_2\sp\cd\sp H_i\sp H_{i+1}\sp\cd\sp H_k=\{e\}\)

とする。\(\bs{F}_i\)と \(\bs{F}_{i+1}\) を取り出して考える。
 \(\bs{F}_i\:\subset\:\bs{F}_{i+1}\:\subset\:\bs{K}\)
 \(H_i\:\sp\:H_{i+1}\:\sp\:\{e\}\)
\(\bs{K}/\bs{Q}\) がガロア拡大なので、\(\bs{K}/\bs{F}_i\) も \(\bs{K}/\bs{F}_{i+1}\) もガロア拡大である。また \(\bs{F}_{i+1}/\bs{F}_i\) は巡回拡大なので、すなわちガロア拡大である。従って正規性定理53C)により、\(H_{i+1}\) は \(H_i\) の正規部分群であり、
 \(\mr{Gal}(\bs{F}_{i+1}/\bs{F}_i)\cong H_i/H_{i+1}\)
となる。\(\bs{F}_{i+1}/\bs{F}_i\) は巡回拡大なので \(\mr{Gal}(\bs{F}_{i+1}/\bs{F}_i)\) は巡回群であり、それと同型である \(H_i/H_{i+1}\) も巡回群である。まとめると「\(H_{i+1}\) は \(H_i\) の正規部分群であり、かつ \(H_i/H_{i+1}\) は巡回群」である。

このことは \(H_i\:(0\leq i\leq k-1)\) で成り立つから、定義によって \(G\) は可解群である。[証明終]


6.3 原始\(n\)乗根を含む体とべき根拡大


この節の目的は「1の原始\(\bs{n}\)乗根を含む体のべき根拡大」の性質を解明することです。そのためにまず、1の原始\(n\)乗根を \(\zeta\) を含む体 \(\bs{Q}(\zeta)\)に関する次の定理を数ステップに分けて証明します。

1の原始\(n\)乗根を \(\zeta\) とする。このとき
 ・\(\bs{Q}(\zeta)/\bs{Q}\) はガロア拡大
 ・\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\:\cong\:(\bs{Z}/n\bs{Z})^{*}\)
が成り立つ。

\(1\) の原始\(n\)乗根
原始n乗根の数:63A)

\(x^n-1=0\) の \(n\)個の解のうち、\(n\)乗して初めて \(1\) になる解を \(1\)の原始\(n\)乗根という。

原始\(n\)乗根は \(\varphi(n)\) 個ある。\(\varphi(n)\) はオイラー関数で、\(n\) と互いに素である \(n\) 以下の自然数の数を表す。


[証明]

まず、
 \(\omega=\mr{cos}\dfrac{2\pi}{n}+i\:\mr{sin}\dfrac{2\pi}{n}\)
とおくと、明らかに \(\omega\) は原始\(n\)乗根である。さらに、
 \(\omega^k=\mr{cos}\dfrac{2\pi k}{n}+i\:\mr{sin}\dfrac{2\pi k}{n}\:(1\leq k\leq n)\)
で \(1\) の\(n\)乗根の全体を表現できる。ここで \(\omega^k\) が原始\(n\)乗根になる条件を考える。いま、
 \((\omega^k)^x=1\:(1\leq x\leq n)\)
 \((\br{A})\)
とすると、この式を満たす \(x\) の最小値が \(n\) であれば、\(\omega^k\) は原始\(n\)乗根である。これを満たす \(x\) は、\(j\) を任意の整数として、
 \(\dfrac{2\pi k}{n}x=2\pi j\)
のときである。つまり、
 \(\dfrac{k}{n}x=j\)
のときである。いま、\(k\) と \(n\) の最大公約数を \(d\) とすると( \(\mr{gcd}(k,n)=d\:)\)、
\(\left\{
\begin{array}{l}
\begin{eqnarray}
&&k=sd&\\
&&n=td&\\
\end{eqnarray}
\end{array}\right.\)
と表せて、このとき \(s\) と \(t\) は互いに素である。これを使うと、
 \(\dfrac{s}{t}x=j\)
のときに \(x\) は \((\br{A})\) 式を満たすことになる。\(s\) と \(t\) は互いに素であり、\(j\) は任意の整数だったから、\(x\) は \(t\) の倍数でなければならない。つまり、\(x\) は \(t=\dfrac{n}{d}\) の倍数である。ということは、\(x\) の最小値は \(\dfrac{n}{d}\) である。そして、\(\dfrac{n}{d}\) が \(n\) に等しいのは \(d=1\) の場合に限る。つまり \(\mr{gcd}(k,n)=1\) なら、\((\br{A})\) 式を満たす最小の \(x\) は \(n\) ということになる。従って、そのときに限り \(\omega^k\) は原始\(n\)乗根である。

\(\mr{gcd}(k,n)=1\) となる \(k\) は \(\varphi(n)\) 個あり、\(1\) の原始\(n\)乗根は \(\varphi(n)\) 個ある。[証明終]


原始n乗根の累乗:63B)

\(1\) の原始\(n\)乗根の一つを \(\zeta\) とすると、
 \(\zeta^m\:\:(1\leq m\leq n)\)
は、\(1\) の\(n\)乗根の全体を表す。また、
 \(\zeta^m\:\:(\mr{gcd}(m,n)=1)\)
は、\(1\) の原始\(n\)乗根の全体を表す。


[証明]

\(\zeta^m\:(1\leq m\leq n)\) の \(n\) 個の値は全部異なっている。なぜなら、もし、 \(\zeta^j=\zeta^i\:(1\leq i < j\leq n)\)
だとすると、
 \(\zeta^{j-i}=1\:(1\leq i < j\leq n)\)
となり、\(j-i < n\) だから、\(\zeta\) が原始\(n\)乗根という前提に反するからである。\(\zeta^m\:(1\leq m\leq n)\) は全部異なっているので、これら \(n\) 個の値は \(1\) の\(n\)乗根全体を表す。

\(\zeta\) は、\(\mr{gcd}(k,n)=1\) である \(k\) を用いて、
 \(\zeta=\omega^k\)
  \(\omega=\mr{cos}\dfrac{2\pi}{n}+i\:\mr{sin}\dfrac{2\pi}{n}\)
と表せる(63A)。すると
 \(\zeta^m=(\omega^k)^m=\omega^{km}\)
である。\(\mr{gcd}(k,n)=1\) なので \(\mr{gcd}(m,n)=1\) なら \(\mr{gcd}(km,n)=1\) である。逆に、\(\mr{gcd}(km,n)=1\) が成り立つのは \(\mr{gcd}(m,n)=1\) のときに限る。従って、
 \(\zeta^m\:(=\omega^{km})\)
は \(\mr{gcd}(m,n)=1\) のとき(かつ、そのときに限って)\(1\) の原始\(n\)乗根である。[証明終]


原始n乗根の最小多項式:63C)

\(1\) の原始\(n\)乗根の一つを \(\zeta\) とする。\(\zeta\) の最小多項式を \(f(x)\) とし、\(k\) を \(n\) とは素な数とする。

このとき \(f(\zeta^k)=0\) である。


[証明]

証明を2つのステップで行う

第1ステップ
\(p\) を \(\bs{n}\) と素な素数とし、\(k=p\) のとき題意が成り立つことを証明する。
第2ステップ
\(k\) を \(\bs{n}\) と素な数とし、第1ステップを使って題意が成り立つことを証明する。

第1ステップ(\(p\) は \(\bs{n}\) と素な素数

本論に入る前に、2つことを確認する。まず、\(p\) を素数とし \(a\) を \(p\) とは素な整数とするとき、\(a\neq0\) ならフェルマの小定理25B)により、
 \(a^{p-1}\equiv1\:(\mr{mod}\:p)\)
が成り立つ。この両辺に \(a\) をかけると、
 \(a^p\equiv a\:(\mr{mod}\:p)\)
 \((\br{A})\)
となるが、この形の式にすると \(a=0,\:p\) でも成り立つ。つまり \(a\) が任意の整数のとき \((\br{A})\) 式が成り立つ。

次に、有限体 \(\bs{F}_p\) 上の多項式(係数が \(\bs{F}_p\) の元である多項式。「2.4 有限体」参照)についての定理である。\(p\) を素数とし \(x,\:y\) を変数とするとき、
 \((x+y)^p=x^p+y^p\:\:\:[\bs{F}_p]\)
が成り立つ。その理由であるが、等式の左辺を整数係数として2項展開すると、
\(\begin{eqnarray}
&&\:\:(x+y)^p=&x^p+{}_{p}\mr{C}_{1}x^{p-1}y+\:\cd\:+{}_{p}\mr{C}_{p-1}xy^{p-1}+y^p\\
\end{eqnarray}\)
となる。この展開における \(x^p\) と \(y^p\) 以外の項の係数は、
 \({}_{p}\mr{C}_{k}=\dfrac{p!}{k!\cdot(p-k)!}\:\:(1\leq k\leq p-1)\)
であるが、\(p\) が素数なので、分母の素因数に \(p\) はなく、分子の素因数にある \(p\) は分母で割り切れない。従って、
 \({}_{p}\mr{C}_{k}\equiv0\:\:(\mr{mod}\:p)\:\:(1\leq k\leq p-1)\)
となり、\(\bs{F}_p\) 上の多項式としては、
 \((x+y)^p=x^p+y^p\:\:\:[\bs{F}_p]\)
が成り立つ。

さらに、3変数、\(x,\:y,\:z\) では、
\(\begin{eqnarray}
&&\:\:(x+y+z)^p&=(x+y)^p+z^p\\
&&&=x^p+y^p+z^p\:\:\:[\bs{F}_p]\\
\end{eqnarray}\)
となり、これを繰り返すと \(n\) 変数に拡張できるのは明らかだから、\(x_1,\:\cd\:,\:x_n\) を変数として、
 \((x_1+x_2+\:\cd\:+x_n)^p=\)
      \(x_1^p+x_2^p+\:\cd\:+x_n^p\:\:\:[\bs{F}_p]\)
 \((\br{B})\)
が成り立つ。

以上の \((\br{A})\) 式と \((\br{B})\) 式を前提として以下の本論を進める。

\(\zeta\) の最小多項式 \(f(x)\) は、最小多項式は既約多項式31I)によって \(\bs{Q}\) 上の既約多項式である。\(\zeta\) は \(x^n-1=0\) と \(f(x)=0\) の共通の解だから、既約多項式の定理131E)により、\(x^n-1\) は \(f(x)\) で割り切れる。そこで、商の多項式を \(g(x)\) として、

 \(x^n-1=f(x)g(x)\)
 \((\br{C})\)

とおく。この式の左辺の \(x^n-1\) は整数係数の多項式である。つまり上の式は、整数係数の多項式が \(\bs{Q}\) 上で(有理数係数の多項式として)因数分解できることになり、整数係数多項式の既約性の定理(31C)によって、\(x^n-1\) は整数係数の多項式で因数分解できる。従って、\(f(x)\) と \(g(x)\) は整数係数としてよい。ということは、\(f(x)\) と \(g(x)\) を有限体 \(\bs{F}_p\) 上の多項式と見なすこともできる。以降の証明にはこのことを使う。

\(p\) は \(n\) と互いに素だから \(\zeta^p\) も \(1\) の原始\(n\)乗根である(63B)。従って \((\br{C})\) 式に \(x=\zeta^p\) を代入すると、左辺は \(0\) だから、
 \(f(\zeta^p)g(\zeta^p)=0\)
となり、\(f(\zeta^p)=0\) もしくは \(g(\zeta^p)=0\) である。

ここから、\(f(\zeta^p)=0\) であることを言うために背理法を使う。以下に \(f(\zeta^p)\neq0\) と仮定すると矛盾が生じることを証明する。

この背理法の仮定のもとでは \(g(\zeta^p)=0\) だから、\(\zeta\) は方程式 \(g(x^p)=0\) の解である。ということは、\(f(x)=0\) と \(g(x^p)=0\) は \(\zeta\) という共通の解をもつことになり、かつ \(f(x)\) は既約多項式であるから、既約多項式の定理131E)によって、\(g(x^p)\) は \(f(x)\) で割り切れる。その商を \(h(x)\) とすると、
 \(g(x^p)=f(x)h(x)\)
 \((\br{D})\)
と表せる。\(h(x)\) も整数係数の多項式である。

\(g(x)\) を、
 \(g(x)=a_mx^m+a_{m-1}x^{m-1}+\:\cd\:+\:a_1x+a_0\)
とし、これを \(\bs{F}_p\) 上の多項式とみなして \(g(x^p)\) を計算する。\((\br{A})\) 式を使って係数を \(\mr{mod}\:p\) でみると、
 \(g(x^p)\)\(\overset{\text{ }}{=}\)\(a_m(x^p)^m+a_{m-1}(x^p)^{m-1}+\:\cd\:+a_1(x^p)+a_0\)
\(\overset{\text{ }}{=}\)\(a_m^p(x^p)^m+a_{m-1}^p(x^p)^{m-1}+\:\cd\:+a_1^p(x^p)+a_0^p\)
\(\overset{\text{ }}{=}\)\((a_mx^m)^p+(a_{m-1}x^{m-1})^p+\:\cd\:+(a_1x)^p+a_0^p\:\:\:[\bs{F}_p]\)
と変形できる。2行目への変形で \((\br{A})\) 式を用いた。

この最後の式は、\((\br{B})\) 式の右辺の \(x_1\) を \(a_mx^m\)、\(x_2\) を \(a_{m-1}x^{m-1}\)、\(\cd\:x_n\) を \(a_0\) と置き換えた形をしている。従って \((\br{B})\) 式を使うと、
 \(g(x^p)\)\(\overset{\text{ }}{=}\)\((a_mx^m+a_{m-1}x^{m-1}+\:\cd\:+a_1x+a_0)^p\)
\(\overset{\text{ }}{=}\)\((g(x))^p\:\:\:[\bs{F}_p]\)
となる。つまり \(g(x)\) を \(\bs{F}_p\) 上の多項式と見なすと、
 \(g(x^p)=(g(x))^p\:\:\:[\bs{F}_p]\)
 \((\br{E})\)
となる。同時に、\((\br{D})\) 式の \(f(x),\:h(x)\) も \(\bs{F}_p\) 上の多項式と見なして \((\br{E})\) 式 を \((\br{D})\) 式に代入すると、
 \((g(x))^p=f(x)h(x)\:\:\:[\bs{F}_p]\)
 \((\br{F})\)
が得られる。

\(f(x)\) は \(\bs{Q}\) 上の(整数係数の)既約多項式であった。しかし \(f(x)\) を \(\bs{F}_p\) 上の多項式と見なしたとき、それが既約多項式だとは限らない。たとえば \(x^2+1=0\) は \(\bs{Q}\) 上の既約多項式であるが、\(\bs{F}_5\) では、
 \(x^2+1=(x-2)(x-3)\:\:\:[\bs{F}_5]\)
と因数分解できるから既約ではない。そこで、\(\bs{F}_p\) 上の多項式 \(f(x)\) を割り切る \(\bs{F}_p\) 上の既約多項式を \(q(x)\) とする。もし \(f(x)\) が \(\bs{F}_p\) 上でもなおかつ既約であれば \(q(x)=f(x)\) である。そうすると \(q(x)\) は \((\br{F})\) 式の右辺を割り切るから、左辺の \((g(x))^p\) も割り切る。ということは、既約多項式と素数の類似性31D)によって、\(q(x)\) は \(g(x)\) を割り切る。

ここで \((\br{C})\) 式に戻って考えると、\((\br{C})\) 式は、
 \(x^n-1=f(x)g(x)\)
 \((\br{C})\)
であった。この式を \(\bs{F}_p\) 上の多項式とみなすと、\(f(x)\) と \(g(x)\) は共に \(q(x)\) という因数をもつから、\((\br{C})\) 式の右辺は \(q(x)^2\) という因数をもつ。従って \((\br{C})\) 式は、
 \(x^n-1=q(x)^2\cdot r(x)\:\:\:[\bs{F}_p]\)
 \((\br{G})\)
と書ける。\(r(x)\) は \(f(x)g(x)\) を \(q(x)^2\) で割ったときの商である。

ここで \((\br{G})\) 式の両辺の導多項式(多項式の形式的微分)を求める。\(\bs{F}_p\) では距離が定義されていないので極限による微分の定義はできないが、形式的微分( \(x^k\:\rightarrow\:kx^{k-1}\) の変換)はできる。すると、
 \(nx^{n-1}\)\(=2q(x)q\,'(x)r(x)+q(x)^2\cdot r\,'(x)\)
\(=q(x)\cdot(2q\,'(x)r(x)+q(x)r\,'(x))\:\:\:[\bs{F}_p]\) 
\((\br{H})\)
となる。

\((\br{G})\) 式と \((\br{H})\) 式により、\(\bs{F}_p\) 上の多項式として、
 \(x^n-1\) と \(nx^{n-1}\) は共通の因数をもつ
ことになる。ここで矛盾が生じる。

なぜなら、\(n\) と \(p\) は互いに素だから、\(\bs{F}_p\) における \(n\) の逆数 \(n^{-1}\) がある。これを用いて \(x^n-1\) と \(nx^{n-1}\) に多項式の互除法を適用すると、
 \(x^n-1=n^{-1}x(nx^{n-1})-1\:\:\:[\bs{F}_p]\)
となって、\(x^n-1\) と \(nx^{n-1}\) の最大公約数は \(-1\:(=p-1)\:\:[\bs{F}_p]\) という定数である。つまり、\(\bs{F}_p\) 上の多項式として、
 \(x^n-1\) と \(nx^{n-1}\) は互いに素
である。これは明らかに矛盾している。この矛盾の発端は \(f(x)=0\) と \(g(x^p)=0\) が \(\zeta\) という共通の解をもつとしたことにあり、つまり \(g(\zeta^p)=0\) としたことにある。

従って、そもそもの仮定である \(f(\zeta^p)\neq0\) は間違っている。つまり \(f(\zeta^p)=0\) である。[第1ステップの証明終]

第2ステップ(\(k\) は \(\bs{n}\) と素な数

\(k\) を \(n\) とは素な(しかし素数ではない)数とし、\(k\) の素因数分解を、
 \(k=p_1p_2\cd p_m\)
とする。この形での素因数分解は、素因数が重複することもありうる。\(k\) は \(n\) と素だから、\(p_1,\:p_2,\:\cd\:,p_m\) のすべての素数は \(n\) と素である。

\(1\) の原始\(n\)乗根の一つを \(\zeta\) とし、第1ステップの \(p=p_1\) とする。\(p_1\) は \(n\) と素だから、原始\(\bs{n}\)乗根の累乗の定理(63B)により、\(\zeta^{p_1}\) も \(1\) の原始\(n\)乗根である。また、第1ステップの証明により、\(f(\zeta^{p_1})=0\) である。

次に、その \(\zeta^{p_1}\) を原始\(n\)乗根としてとりあげ、\(p=p_2\) とする。\(p_2\) は \(n\) と素だから、\((\zeta^{p_1})^{p_2}=\zeta^{p_1p_2}\) もまた原始\(n\)乗根になる(63B)。従って、第1ステップでの証明を適用して \(f(\zeta^{p_1p_2})=0\) である。

このプロセスは次々と続けることができる。結局 \(\zeta^{p_1p_2\:\cd\:p_m}=\zeta^k\) は \(1\) の原始\(n\)乗根であると同時に、\(f(\zeta^k)=0\) を満たす。\(k\) につけた条件は「\(n\) と互いに素」だけである。

原始\(\bs{n}\)乗根の累乗の定理(63B)により、\(k\) が \(n\) と素という条件で、\(\zeta^k\) は原始\(n\)乗根のすべてを表す。従って、\(f(x)=0\) は原始\(n\)乗根のすべてを解とする方程式である。[証明終]


この原始\(\bs{n}\)乗根の最小多項式の定理(63C)より、次の定理がすぐに導けます。


円分多項式:63D)

\(1\) の原始\(n\)乗根の一つを \(\zeta\) とし、\(\zeta\) の最小多項式を \(f(x)\) とすると、\(f(x)\) は円分多項式である。円分多項式とは、方程式 \(f(x)=0\) が \(\varphi(n)\) 個の解をもち、それらすべてが原始\(n\)乗根である多項式である。

従って、原始\(\bs{n}\)乗根は互いに共役である。最小多項式は既約多項式なので(31I)、円分多項式は既約多項式である。

\(\bs{Q}\) に \(\zeta\) を添加した単拡大体 \(\bs{Q}(\zeta)\) は円分多項式の最小分解体であり、\(\bs{\bs{Q}(\zeta)/\bs{Q}}\) はガロア拡大である。


\(\bs{Q}(\zeta)\)のガロア群
Q(ζ)のガロア群:63E)

\(1\) の原始\(n\)乗根の一つを \(\zeta\) とすると、

 \(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\cong(\bs{Z}/n\bs{Z})^{*}\)

である。つまり \(1\) の原始\(n\)乗根の一つを \(\bs{Q}\) に添加した拡大体のガロア群は、既約剰余類群に同型である。


[証明]

\(1\) の原始\(n\)乗根の一つを \(\zeta\) とし、最小多項式を \(f(x)\) とすると、円分多項式の定理(63D)により、\(f(x)=0\) の解は \(\varphi(n)=m\) 個の原始\(n\)乗根である。

原始\(n\)乗根を
 \(\zeta^{k_i}\:(\:1\leq i\leq m,\:1\leq k_i\leq n\) かつ \(\mr{gcd}(k_i,n)=1\:)\)
と表すと、それらは互いに共役である。また、\(f(x)\) の最小分解体は、
 \(\bs{Q}(\zeta^{k_1},\zeta^{k_2},\cd,\zeta^{k_m})=\bs{Q}(\zeta)\)
である。

\(\zeta\) に作用する同型写像 \(\sg\) を考えると、\(\sg\) は \(\zeta\) を共役な元に移すから、
 \(\sg_{k_i}(\zeta)=\zeta^{k_i}\)
で \(m\) 個の同型写像が定義できる。この \(\sg\) による移り先はすべて \(\bs{Q}(\zeta)\) の元だから、\(\sg\) は \(\bs{Q}(\zeta)\) の自己同型写像である。また、\(\sg_{k_i}\) と \(\sg_{k_j}\) の積は、
\(\begin{eqnarray}
&&\:\:\sg_{k_i}(\sg_{k_j})&=\sg_{k_i}(\zeta^{k_j})\\
&&&=(\zeta^{k_j})^{k_i}\\
&&&=\zeta^{k_ik_j}\\
\end{eqnarray}\)
と計算できる。そこで \(\sg\) の演算規則を、
 \(\sg_{k_i}\sg_{k_j}=\sg_{k_ik_j}\)
と定める。

ここで \(k_ik_j\) は、\(1\leq k_i,\:k_j\leq n\) かつ \(\mr{gcd}(k_i,n)=1\) かつ \(\mr{gcd}(k_j,n)=1\) だから、既約剰余類群 \((\bs{Z}/n\bs{Z})^{*}\) の元であり、乗算で閉じている。すなわち \(\sg_{k_ik_j}\) は \(\sg\) のどれかである。つまり、自己同型写像である \(\sg\) は上の演算規則で群になり、ガロア群 \(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) である。

\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) から \((\bs{Z}/n\bs{Z})^{*}\) への写像 \(f\) を、
 \(f\::\) \(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) \(\longrightarrow\) \((\bs{Z}/n\bs{Z})^{*}\)
\(\sg_{k_i}\)\(\longmapsto\) \(k_i\)
で定めると、
 \(f(\sg_{k_i}\sg_{k_j})\)\(=f(\sg_{k_ik_j})\)
\(=k_ik_j\)
 \(f(\sg_{k_i})f(\sg_{k_j})\)\(=k_ik_j\)
が成り立つから、\(f\) は群の同型写像になる。従って、\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) と \((\bs{Z}/n\bs{Z})^{*}\) は同型である。[証明終]


既約剰余類群 \((\bs{Z}/n\bs{Z})^{*}\) は巡回群の直積と同型です(25G)。従って次の定理が得られます。


Q(ζ)のガロア群は巡回群:63F)

\(1\) の原始\(n\)乗根の一つを \(\zeta\) とすると、\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) は巡回群の直積と同型である。

従って、\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) は可解群であり(61B)、累巡回拡大である(62C)。


累巡回拡大は、可解性の必要条件を証明する重要ポイントです。そこで次に、\(\bs{Q}(\zeta)/\bs{Q}\) が累巡回拡大になる様子を、ガロア群の計算で示します。

円分拡大は累巡回拡大
\(1\) の原始\(n\)乗根 \(\zeta\) を \(\bs{Q}\) に添加する拡大、\(\bs{Q}(\zeta)/\bs{Q}\) を円分拡大と言います。\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) は巡回群の直積と同型で、従って 円分拡大 \(\bs{Q}(\zeta)/\bs{Q}\) は累巡回拡大です。

\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) が巡回群の直積と同型になる理由は、既約剰余類群と同型であること、つまり、
 \(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\cong(\bs{Z}/n\bs{Z})^{*}\)
でした(63E)。その \((\bs{Z}/n\bs{Z})^{*}\) について振り返ってみると、次の通りです。\(\varphi\) はオイラー関数です。

 \(\bs{n}\) が奇素数 \(\bs{p}\) 、ないしは奇素数 のべき乗のとき
       (\(n=p^k,\:1\leq k\))(25D)(25E
  \((\bs{Z}/p^k\bs{Z})^{*}\) は生成元をもつ巡回群
  群位数:\(\varphi(p^k)=p^{k-1}(p-1)\)

 \(\bs{n}\) が2のべき乗のとき
       (\(n=2^k,\:2\leq k\))(25F
  \((\bs{Z}/2^k\bs{Z})^{*}\cong(\bs{Z}/2\bs{Z})\times(\bs{Z}/2^{k-2}\bs{Z})\)
  群位数:\(\varphi(2^k)=2^{k-1}\)

 \(\bs{n=p^a\cdot q^b\cdot r^c}\)のとき
       (\(p,\:q,\:r\) は素数)(25G
  \((\bs{Z}/n\bs{Z})^{*}\cong(\bs{Z}/p^a\bs{Z})^{*}\times(\bs{Z}/q^b\bs{Z})^{*}\times(\bs{Z}/r^c\bs{Z})^{*}\)
  群位数:\(\varphi(n)=\varphi(p^a)\varphi(q^b)\varphi(r^c)\)

もちろん最後の式は、素因数が4個以上でも同様に成り立ちます。以下、それぞれの例をあげます。

 \(\zeta\) が 原始\(25\)乗根のとき 

\(\zeta\) が 原始\(25\)乗根の(一つ)のとき、原始\(25\)乗根の全体は \(\zeta^k\:\:(\mr{gcd}(k,25)=1)\) で表され(63B)、その数は \(25\) と互いに素な自然数の数、\(\varphi(25)=20\) です。\(\bs{Q}(\zeta)\) のガロア群は、
 \(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\cong(\bs{Z}/5^2\bs{Z})^{*}\)
でした(63E)。\((\bs{Z}/5\bs{Z})^{*}\) の最小の生成元は \(2\) ですが(25D)、ほどんどの場合、\((\bs{Z}/p\bs{Z})^{*}\) の生成元は同時に \((\bs{Z}/p^2\bs{Z})^{*}\) の生成元です(25E)。実際、\(2\) は \((\bs{Z}/25\bs{Z})^{*}\) の生成元であることが確認できます。

そこで、\(\bs{Q}(\zeta)\) の自己同型写像 \(\sg\) を、
 \(\sg(\zeta)=\zeta^2\)
と定義すると、\(\sg^k(\zeta)\:\:(1\leq k\leq20)\) は、

 \(\zeta^2,\:\zeta^4,\:\zeta^8,\:\zeta^{16},\:\zeta^7,\:\zeta^{14},\:\zeta^3,\:\zeta^6,\:\zeta^{12},\:\zeta^{24},\)
 \(\zeta^{23},\:\zeta^{21},\:\zeta^{17},\:\zeta^9,\:\zeta^{18},\:\zeta^{11},\:\zeta^{22},\:\zeta^{19},\:\zeta^{13},\:\zeta\)

となって、原始\(25\)乗根の全部を尽くします。つまり、
 \(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})=\{e,\:\sg,\:\sg^2,\:\cd,\:\sg^{19}\}\)
  \(\sg(\zeta)=\zeta^2\)
であり、\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) は位数 \(20\) の巡回群で、
 \(\bs{Q}\:\subset\:\bs{Q}(\zeta)\)
は巡回拡大です。

 \(\zeta\) が 原始\(16\)乗根のとき 

原始\(16\)乗根は、自然数 \(k\) を \(16\) 以下の奇数として \(\zeta^k\) で表され、次の8個です。
 \(\zeta,\:\zeta^3,\:\zeta^5,\:\zeta^7,\:\zeta^9,\:\zeta^{11},\:\zeta^{13},\:\zeta^{15}\)
ここで、\(n\) が2のべき乗のときの同型は、
 \((\bs{Z}/16\bs{Z})^{*}\cong(\bs{Z}/2\bs{Z})\times(\bs{Z}/4\bs{Z})\)
でした(25F)。つまり、\((\bs{Z}/16\bs{Z})^{*}\) は巡回群ではありませんが、位数 \(2\) の巡回群と位数 \(4\) の巡回群の直積に同型です。このことの証明(25F)を振り返ってみると、\(\mr{mod}\:16\) でみて \(5^k\:\:(0\leq k\leq3)\) は、
 \(1,\:5,\:9,\:13\)
であり、\((\bs{Z}/16\bs{Z})^{*}\) の元のうちの「4で割って1余る数」が全部現れるのでした。そこで、\(\bs{Q}(\zeta)\) の自己同型写像 \(\sg\) を、
 \(\sg(\zeta)=\zeta^5\)
と定義すると、\(\sg^k(\zeta)\:\:(0\leq k\leq3)\) は、
 \(\zeta,\:\zeta^5,\:\zeta^9,\:\zeta^{13}\)
で、原始\(16\)乗根の半数を表現します。
 \(G=\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\)
 \(H=\{e,\:\sg,\:\sg^2,\:\sg^3\}\)
と書くと、\(H\) は \(G\) の部分群で、\(H\) の位数 \(4\) は \(G\) の位数 \(8\) の半分です。

\(H\) の固定体を \(\bs{K}\) とします。
 \(\sg(\zeta^4)=\sg(\zeta)^4=(\zeta^5)^4=\zeta^{20}\)
ですが、\(\zeta^{16}=1\) なので、
 \(\sg(\zeta^4)=\zeta^4\)
です。\(\zeta^4\) は \(\sg\) で不変であり、従って \(\zeta^4\) は \(H\) のすべての元で不変です。\(\zeta^4\) は4乗して初めて \(1\) になる数で、\(1\) の原始4乗根、つまり \(i\)(または \(-i\)。\(i\) は虚数単位)です。つまり \(i\) は固定体 \(\bs{K}\) の元であり、
 \(\bs{Q}(i)\:\subset\:\bs{K}\)
です。\(\bs{K}\) が \(H\) の固定体なので、ガロア対応は、
 \(G\:\sp\:H\:\sp\:\{\:e\:\}\)
 \(\bs{Q}\:\subset\:\bs{K}\:\subset\:\bs{Q}(\zeta)\)
です。ガロア対応の定理(53B)により、
 \(\mr{Gal}(\bs{Q}(\zeta)/\bs{K})=H\)
であり、次数と位数の同一性52B)により、体の拡大次数はガロア群の位数と等しいので、
 \([\:\bs{Q}(\zeta):\bs{K}\:]=|H|=4\)
です。また、
 \([\:\bs{Q}(\zeta):\bs{Q}\:]=\varphi(16)=8\)
なので、拡大次数の連鎖律33H)により、
 \([\:\bs{K}:\bs{Q}\:]=2\)
です。一方、\(i\) は既約な2次方程式 \(x^2+1=0\) の根なので、\([\:\bs{Q}(i):\bs{Q}\:]=2\) です。つまり \(\bs{K}\) と \(\bs{Q}(i)\) は次元(\(=\:2\))が一致し、かつ \(\bs{Q}(i)\:\subset\:\bs{K}\) なので、体の一致の定理(33I)によって、
 \(\bs{K}=\bs{Q}(i)\)
です。まとめると、\(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q}(i))\) は位数 \(4\) の巡回群であり、\(\bs{Q}(\zeta)/\bs{Q}(i)\) は巡回拡大です。

また、
 \(\tau(i)=-i\)
と定義すると、\(\tau\) は \(\bs{Q}(i)\) の自己同型写像です。従って、
 \(\mr{Gal}(\bs{Q}(i)/\bs{Q})=\{e,\:\tau\}\)
であり、\(\mr{Gal}(\bs{Q}(i)/\bs{Q})\) は位数 \(2\) の巡回群で、\(\bs{Q}(i)/\bs{Q}\) は巡回拡大です。

以上で、
 \(\bs{Q}\:\subset\:\bs{Q}(i)\:\subset\:\bs{Q}(\zeta)\)
は2つの巡回拡大を連鎖させた累巡回拡大です。

 \(\zeta\) が 原始\(360\)乗根のとき 

\(n\) が複数の素因数をもつ一般的な場合を確認します。分かりやすいように \(n=360\) とします。\(360=2^3\cdot3^2\cdot5\) なので、既約剰余類群の構造の定理(25G)によって、
 \((\bs{Z}/360\bs{Z})^{*}\cong(\bs{Z}/8\bs{Z})^{*}\times(\bs{Z}/9\bs{Z})^{*}\times(\bs{Z}/5\bs{Z})^{*}\)
です。右辺の群位数はそれぞれ、
 \(|(\bs{Z}/8\bs{Z})^{*}|=\varphi(8)=4\)
 \(|(\bs{Z}/9\bs{Z})^{*}|=\varphi(9)=6\)
 \(|(\bs{Z}/5\bs{Z})^{*}|=\varphi(5)=4\)
なので、
 \(|(\bs{Z}/360\bs{Z})^{*}|=4\cdot6\cdot4=96=\varphi(360)\)
です。ここで、
 \(1\) の原始\(8\)乗根 \(:\:\zeta^{45}\)
 \(1\) の原始\(9\)乗根 \(:\:\zeta^{40}\)
 \(1\) の原始\(5\)乗根 \(:\:\zeta^{72}\)
ですが、これらを用いると、
 \(\bs{Q}(\zeta)=\bs{Q}(\zeta^{45},\zeta^{40},\zeta^{72})\)
が成り立ちます。その理由ですが、
 \(\bs{Q}(\zeta^{45},\zeta^{40},\zeta^{72})\subset\bs{Q}(\zeta)\)
であるのは当然として、その逆である、
 \(\bs{Q}(\zeta)\subset\bs{Q}(\zeta^{45},\zeta^{40},\zeta^{72})\)
も成り立つからです。なぜなら、
 \(45x+40y+72z=1\)
の1次不定方程式を考えると、\(\mr{gcd}(45,40,72)=1\) なので不定方程式の解の存在の定理(21C)により必ず整数解があります。具体的には、
 \(x=5,\:\:y=7,\:\:z=-7\)
が解(の一つ)です。従って、
 \(\zeta=(\zeta^{45})^5\cdot(\zeta^{40})^7\cdot(\zeta^{72})^{-7}\)
であり、\(\zeta\) が \(\zeta^{45},\:\zeta^{40},\:\zeta^{72}\) の四則演算で表現できるので、
 \(\bs{Q}(\zeta)\subset\bs{Q}(\zeta^{45},\zeta^{40},\zeta^{72})\)
です。この結果、
 \(\bs{Q}(\zeta)=\bs{Q}(\zeta^{45},\zeta^{40},\zeta^{72})\)
となります。

以上を踏まえると、\(\bs{Q}\) から \(\bs{Q}(\zeta)\) への体の拡大は、
\(\begin{eqnarray}
&&\:\:\bs{Q}&\subset\bs{Q}(\zeta^{45})\\
&&&\subset\bs{Q}(\zeta^{45},\zeta^{40})\\
&&&\subset\bs{Q}(\zeta^{45},\zeta^{40},\zeta^{72})=\bs{Q}(\zeta)\\
\end{eqnarray}\)
と、\(\bs{Q}\) からの単拡大を3回繰り返したものと言えます。以降で、それぞれの単拡大が巡回拡大になることを確認します。

 \(\bs{Q}\:\subset\:\bs{Q}(\zeta^{45})\) 

\(\zeta^{45}\) は原始\(8\)乗根なので、上で検討した原始\(16\)乗根の結果がそのまま使えます。つまり、
 \(\bs{Q}\subset\bs{Q}(i)\subset\bs{Q}(\zeta^{45})\)
と表され、
 \([\:\bs{Q}(i):\bs{Q}\:]=2\)
 \([\:\bs{Q}(\zeta^{45}):\bs{Q}(i)\:]=2\)
 \([\:\bs{Q}(\zeta^{45}):\bs{Q}\:]=4\)
であり、\(\mr{Gal}(\bs{Q}(i)/\bs{Q}),\:\mr{Gal}(\bs{Q}(\zeta^{45})/\bs{Q}(i))\) は位数2の巡回群です。原始8乗根は簡単に計算できて、たとえばその一つは、
\(\begin{eqnarray}
&&\:\:\zeta^{45}&=\mr{cos}\dfrac{\pi}{4}+i\:\mr{sin}\dfrac{\pi}{4}\\
&&&=\dfrac{1}{2}(\sqrt{2}+\sqrt{2}\:i)\\
\end{eqnarray}\)
なので、
 \(\bs{Q}\subset\bs{Q}(i)\subset\bs{Q}(i,\sqrt{2})=\bs{Q}(\zeta^{45})\)
と表現することができます。この結果を使って、2つのガロア群 \(G_1\) と\(G_2\) の元を表現すると、
 \(G_1=\mr{Gal}(\bs{Q}(i)/\bs{Q})=\{e,\:\sg_1\}\)
  \(\sg_1(i)=-i\)
 \(G_2=\mr{Gal}(\bs{Q}(\zeta^{45})/\bs{Q}(i))=\{e,\:\sg_2\}\)
  \(\sg_2(\sqrt{2})=-\sqrt{2}\)
となります。

 \(\bs{Q}(\zeta^{45})\subset\bs{Q}(\zeta^{45},\zeta^{40})\) 

\(\zeta^{40}\) は原始\(9\)乗根です。原始\(9\)乗根の一つを \(\al\) と書くと、原始\(9\)乗根の全体は \(1\)~\(8\) の数で \(9\) と素なものを選んで、
 \(\al,\:\al^2,\:\al^4,\:\al^5,\:\al^7,\:\al^8\)
の6つになり、これらが共役な元です。\((\bs{Z}/9\bs{Z})^{*}\) の元は、
 \((\bs{Z}/9\bs{Z})^{*}=\{1,\:2,\:4,\:5,\:7,\:8\}\)
ですが、生成元は \(2\) か \(5\) です。生成元として \(2\) を採用すると、\(2^k\:(\mr{mod}\:9)\:(1\leq k\leq6)\) は、
 \(2,\:4,\:8,\:7,\:5,\:1\)
と、\((\bs{Z}/9\bs{Z})^{*}\) の元を巡回します。
 \(G_3=\mr{Gal}(\bs{Q}(\zeta^{45},\zeta^{40})/\bs{Q}(\zeta^{45}))\)
と書くことにし、ガロア群 \(G_3\) の元 \(\sg\) を、
 \(\sg(\al)=\al^2\)
と定義すると、
 \(G_3=\{e,\:\sg,\:\sg^2,\:\sg^3,\:\sg^4,\:\sg^5\}\)
となります。\(\al\) を \(\zeta\) で表すと、
 \(\sg(\zeta^{40})=\zeta^{80}\)
 \((\br{A})\)
です。

ただし、ガロア群の定義によって \(\sg\) は \(\zeta^{45}\) を不動にします。従って、
 \(\sg(\zeta^{45})=\zeta^{45}\)
 \((\br{B})\)
を満たさなければなりません。ここで、\(\sg\) が \(\zeta\) に作用したとき、
 \(\sg(\zeta)=\zeta^x\)
 \((\br{C})\)
であると仮定します。すると \((\br{A})\) 式と \((\br{C})\) 式から、
 \(40x\equiv80\:\:(\mr{mod}\:360)\)
 \(x\equiv2\:\:(\mr{mod}\:9)\)
 \((\br{D})\)
です。また、\((\br{B})\) 式と \((\br{C})\) 式から、
 \(45x\equiv45\:\:(\mr{mod}\:360)\)
 \(x\equiv1\:\:(\mr{mod}\:8)\)
 \((\br{E})\)
です。\(9\) と \(8\) は互いに素です。そうすると中国剰余定理21F)によって、\((\br{D})\) 式と \((\br{E})\) 式の連立合同方程式は \(0\leq x < 9\cdot8\) の範囲に唯一の解があります。それを求めると、
 \(x=65\)
です。当然ですが、\(65\)の累乗を \((\mr{mod}\:9)\) で計算してみると、
 \(65^{\phantom{1}}\equiv2\:\:(\mr{mod}\:9)\)
 \(65^2\equiv4\:\:(\mr{mod}\:9)\)
 \(65^3\equiv8\:\:(\mr{mod}\:9)\)
 \(65^4\equiv7\:\:(\mr{mod}\:9)\)
 \(65^5\equiv5\:\:(\mr{mod}\:9)\)
 \(65^6\equiv1\:\:(\mr{mod}\:9)\)
となって、\(2\) の累乗 \((\mr{mod}\:9)\) と一致します。\(\mr{mod}\:360\) に戻すと、
 \(40\cdot65^{\phantom{1}}\equiv40\cdot2\:\:(\mr{mod}\:360)\)
 \(40\cdot65^2\equiv40\cdot4\:\:(\mr{mod}\:360)\)
 \(40\cdot65^3\equiv40\cdot8\:\:(\mr{mod}\:360)\)
 \(40\cdot65^4\equiv40\cdot7\:\:(\mr{mod}\:360)\)
 \(40\cdot65^5\equiv40\cdot5\:\:(\mr{mod}\:360)\)
 \(40\cdot65^6\equiv40\phantom{\cdot5\:\:(}(\mr{mod}\:360)\)
です。この結果、
\(\sg_3(\zeta)=\zeta^{65}\)
と定義すると、\(\sg_3\) は \(\al=\zeta^{40}\) を、
 \(\sg_3^{\:\phantom{1}}(\al)=\al^2,\:\:\sg_3^{\:2}(\al)=\al^4,\:\:\sg_3^{\:3}(\al)=\al^8\)
 \(\sg_3^{\:4}(\al)=\al^7,\:\:\sg_3^{\:5}(\al)=\al^5,\:\:\sg_3^{\:6}(\al)=\al\)
と巡回させます \((\zeta^{360}=1)\)。また、
 \(65\cdot45=2925\equiv45\:\:(\mr{mod}\:360)\)
なので、
 \(\sg_3(\zeta^{45})=\zeta^{45}\)
です。結局、

\(\begin{eqnarray}
&&\:\:G_3&=\mr{Gal}(\bs{Q}(\zeta^{45},\zeta^{40})/\bs{Q}(\zeta^{45}))\\
&&&=\{e,\:\sg_3,\:\sg_3^{\:2},\:\sg_3^{\:3},\:\sg_3^{\:4},\:\sg_3^{\:5}\}\\
\end{eqnarray}\)
  \(\sg_3(\zeta)=\zeta^{65}\)

がガロア群です。

 \(\bs{Q}(\zeta^{45},\zeta^{40})\subset\bs{Q}(\zeta^{45},\zeta^{40},\zeta^{72})\) 

\(\zeta^{72}\) は原始\(5\)乗根で、\((\bs{Z}/5\bs{Z})^{*}\) の生成元は \(2\) か \(3\) です。生成元として \(2\) を採用すると、ガロア群の元 \(\sg\) は、先ほどと同じように考えて、
 \(\sg(\zeta^{72})=\zeta^{144}\)
 \((\br{A}\,')\)
です。また \(\sg\) は \(\zeta^{45}\) と \(\zeta^{40}\) を固定するので、
 \(\sg(\zeta^{45})=\zeta^{45},\:\:\:\sg(\zeta^{40})=\zeta^{40}\)
 \((\br{B}\,')\)
です。\(\sg\) が \(\zeta\) に作用したときに、
 \(\sg(\zeta)=\zeta^x\)
 \((\br{C})\)
だとすると、\((\br{A}\,')\:\:(\br{B}\,')\) と \((\br{C})\) により、
 \(72x\equiv144\) \((\mr{mod}\:360)\)
 \(45x\equiv45\) \((\mr{mod}\:360)\)
 \(40x\equiv40\) \((\mr{mod}\:360)\)
ですが、これを簡単にして、
 \(x\equiv2\) \((\mr{mod}\:5)\)
 \(x\equiv1\) \((\mr{mod}\:8)\)
 \(x\equiv1\) \((\mr{mod}\:9)\)
が得られます。この連立合同方程式も中国剰余定理\(\bs{\cdot}\)多連立21G)によって、\(0\leq x < 9\cdot8\cdot5=360\) の範囲に唯一の解があります。それを求めると、
 \(x=217\)
です。従って、
\(\sg_4(\zeta)=\zeta^{217}\)
と定義すると、
 \(G_4=\{e,\:\sg_4,\:\sg_4^{\:2},\:\sg_4^{\:3}\}\)
  \(\sg_4(\zeta)=\zeta^{217}\)
がガロア群になります。\(217^4\equiv1\:\:(\mr{mod}\:360)\) です。なお、
 \(\bs{Q}(\zeta^{45},\zeta^{40})=\bs{Q}(\zeta^5)\)
と簡略化できます。なぜなら、\(40\) と \(45\) の最大公約数は \(5\) なので、
 \(45x+40y=5\)
の1次不定方程式には整数解があり(21B)、具体的には、
 \(x=1,\:\:y=-1\)
が解(の一つ)で、
 \(\zeta^5=\zeta^{45}\cdot(\zeta^{40})^{-1}\)
と表せるからです。また、
 \(\bs{Q}(\zeta)=\bs{Q}(\zeta^{45},\zeta^{40},\zeta^{72})\)
だったので、
\(\begin{eqnarray}
&&\:\:G_4&=\mr{Gal}(\bs{Q}(\zeta)/\bs{Q}(\zeta^5))\\
&&&=\{e,\:\sg_4,\:\sg_4^{\:2},\:\sg_4^{\:3}\}\\
\end{eqnarray}\)
  \(\sg_4(\zeta)=\zeta^{217}\)
と表記できます。\(G_4\) は位数 \(4\) の巡回群であり、\(\bs{Q}(\zeta)/\bs{Q}(\zeta^5)\) は巡回拡大です。さらに、
\(\begin{eqnarray}
&&\:\:\sg_4(\zeta^5)&=\zeta^{5\cdot217}=\zeta^{1085}\\
&&&=\zeta^{3\cdot360+5}=\zeta^5\\
\end{eqnarray}\)
なので、\(\sg_4\) が \(\zeta^5\) を固定することが確認できました。


以上の考察をまとめると、\(\zeta\) が \(1\) の原始\(360\)乗根のとき、

 \(\bs{Q}\subset\bs{Q}(i)\subset\bs{Q}(\zeta^{45})\subset\bs{Q}(\zeta^5)\subset\bs{Q}(\zeta)\)

という、4段階の巡回拡大が得られました。\(i\) は原始\(4\)乗根なので、\(\bs{Q}(i)\) は \(\bs{Q}(\zeta^{90})\) と同じ意味です。それそれの拡大のガロア群を \(G_1,\:G_2,\:G_3,\:G_4\) とすると、

 \(G_1=\{e,\:\sg_1\}\)
  \(\sg_1(i)=-i\)
 \(G_2=\{e,\:\sg_2\}\)
  \(\sg_2(\sqrt{2})=-\sqrt{2}\)
 \(G_3=\{e,\:\sg_3,\:\sg_3^{\:2},\:\sg_3^{\:3},\:\sg_3^{\:4},\:\sg_3^{\:5}\}\)
  \(\sg_3(\zeta)=\zeta^{65}\)
 \(G_4=\{e,\:\sg_4,\:\sg_4^{\:2},\:\sg_4^{\:3}\}\)
  \(\sg_4(\zeta)=\zeta^{217}\)

であり、これらすべてが巡回群です。また、体の拡大次数はガロア群の位数と一致し、順に \(2,\:2,\:6,\:4\) です。以上のことは、\(\zeta\) を \(1\) の\(360\)乗根とするとき、
 \(\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\cong(\bs{Z}/360\bs{Z})^{*}\)
\(\begin{eqnarray}
&&\:\:(\bs{Z}/360\bs{Z})^{*}&\cong(\bs{Z}/8\bs{Z})^{*}\times(\bs{Z}/9\bs{Z})^{*}\times(\bs{Z}/5\bs{Z})^{*}\\
&&&\cong(\bs{Z}/2\bs{Z})\times(\bs{Z}/2\bs{Z})\times(\bs{Z}/9\bs{Z})^{*}\times(\bs{Z}/5\bs{Z})^{*}\\
\end{eqnarray}\)
であることの必然的な結果です。

以上のガロア群の計算を通して、\(\bs{Q}(\zeta)/\bs{Q}\) は累巡回拡大であることが確認できました。

べき根拡大
べき根拡大の定義:63G)

\(\bs{K}\) 上の方程式 \(x^n-a=0\:(a\in\bs{K}\)、\(a\neq1)\) の解の一つで、\(\bs{K}\) に含まれないものを \(\sqrt[n]{a}\) とするとき、\(\bs{K}(\sqrt[n]{a})\) を \(\bs{K}\) のべき根拡大(radical extension)と呼ぶ。

また、\(\bs{K}\) からのべき根拡大を繰り返して拡大体 \(\bs{F}\) ができるとき、\(\bs{F}/\bs{K}\) を累べき根拡大と言う。


\(x^n-a\) は既約多項式とは限らないので、\(\bs{K}(\sqrt[n]{a})/\bs{K}\) の拡大次数は \(n\) とは限りません。

また一般に、べき根拡大はガロア拡大ではありません。しかし \(\bs{K}\) に特別の条件(= \(\bs{K}\) に \(1\) の原始\(n\)乗根 \(\zeta\) が含まれる)があるときは、べき根拡大がガロア拡大、かつ巡回拡大になります。この「原始\(\bs{n}\)乗根を含む体からのべき根拡大」を考えるのが、ガロア理論の巧妙なアイデアです。

\(1\) の原始\(n\)乗根を含むべき根拡大
原始n乗根を含むべき根拡大:63H)

\(1\) の原始\(n\)乗根を \(\zeta\) とし、\(\bs{K}\) に \(\zeta\) が含まれるとする。\(\bs{K}\) 上の方程式 \(x^n-a=0\:(a\in\bs{K}\)、\(a\neq1)\) の解の一つで、\(\bs{K}\) に含まれないものを \(\sqrt[n]{a}\) とし、\(\bs{L}=\bs{K}(\sqrt[n]{a})\) とすると、
\(\bs{L}/\bs{K}\) は巡回拡大である
\(\mr{Gal}(\bs{L}/\bs{K})\) の位数は \(n\) の約数である
が成り立つ。


[証明]

\(\bs{K}(\sqrt[n]{a})\) 上の同型写像を \(\tau\) とする。\(x^n-a=0\) の解は、
 \(\sqrt[n]{a},\:\sqrt[n]{a}\:\zeta,\:\sqrt[n]{a}\:\zeta^2,\:\cd\:,\:\sqrt[n]{a}\:\zeta^{n-1}\)
であり、\(\tau\) を \(\sqrt[n]{a}\) に作用させたときの移り先は、このうちのどれかである。もともと \(\bs{K}\) には \(1\) の原始\(n\)乗根 \(\zeta\) が 含まれているから、これらの移り先はすべて \(\bs{K}(\sqrt[n]{a})\) の元である。従って \(\tau\) は自己同型写像であり、\(\bs{K}(\sqrt[n]{a})/\bs{K}\) はガロア拡大である。

次にガロア群 \(\mr{Gal}(\bs{K}(\sqrt[n]{a})/\bs{K})\) の元と、\(\bs{K}(\sqrt[n]{a})/\bs{K}\) の拡大次数を求める。\(\sqrt[n]{a}\) の \(\bs{K}\) 上の最小多項式を \(f(x)\) とする。最小多項式は既約多項式31I)により \(f(x)\) は既約多項式であり、\(f(x)=0\) と \(x^n-a=0\) は共通の解 \(\sqrt[n]{a}\) を持つから、\(x^n-a=0\) は \(f(x)\) で割り切れる。従って \(f(x)=0\) の解は、\(x^n-a=0\) の解、\(\sqrt[n]{a},\:\sqrt[n]{a}\:\zeta,\:\sqrt[n]{a}\:\zeta^2,\:\cd\:,\:\sqrt[n]{a}\:\zeta^{n-1}\) の全部、またはその一部である。\(f(x)=0\) の解で、\(\sqrt[n]{a}\:\zeta^{t}\) の\(t\) が最小となる 正の数を \(d\:(1\leq d\leq n-1)\) とする。そして \(\bs{K}\) の元を固定する \(\bs{K}(\sqrt[n]{a})\) の同型写像、\(\sg\) を、
 \(\sg(\sqrt[n]{a})=\sqrt[n]{a}\:\zeta^{d}\)
と定義する。これは自己同型写像になるから、\(\mr{Gal}(\bs{K}(\sqrt[n]{a})/\bs{K})\) の元である。\(\sg\) は \(\bs{K}\) の元を固定するから \(\sg(\zeta)=\zeta\) である。これを用いて \(\sg^i(\sqrt[n]{a})\) を求めると、
\(\begin{eqnarray}
&&\:\:\sg^2(\sqrt[n]{a})&=\sg(\sg(\sqrt[n]{a}))=\sg(\sqrt[n]{a}\:\zeta^{d})=\sg(\sqrt[n]{a})\zeta^{d}\\
&&&=\sqrt[n]{a}\:\zeta^{d}\zeta^{d}=\sqrt[n]{a}\:\zeta^{2d}\\
&&\:\:\sg^3(\sqrt[n]{a})&=\sg(\sg^2(\sqrt[n]{a}))=\sg(\sqrt[n]{a}\:\zeta^{2d})=\sg(\sqrt[n]{a})\zeta^{2d}\\
&&&=\sqrt[n]{a}\:\zeta^{d}\zeta^{2}d=\sqrt[n]{a}\:\zeta^{3d}\\
\end{eqnarray}\)
となり、一般的には、
 \(\sg^i(\sqrt[n]{a})=\sqrt[n]{a}\:\zeta^{id}\:(1\leq i)\)
となる。\(i=n\) とおくと、
 \(\sg^n(\sqrt[n]{a})=\sqrt[n]{a}\:\zeta^{nd}=\sqrt[n]{a}\)
となるから、\(\sg^n=e\) である。

\(n\) を \(d\) で割ったときの商を \(s\)、余りを \(r\) とする。
 \(n=sd+r\:(1 < s\leq n,\:0\leq r < d)\)
である。ここで \(\sg^i(\sqrt[n]{a})\) の \(i\) を \(n-s\) とおくと、
\(\begin{eqnarray}
&&\:\:\sg^{n-s}(\sqrt[n]{a})&=\sqrt[n]{a}\:\zeta^{nd-sd}\\
&&&=\sqrt[n]{a}\:\zeta^{n(d-1)+n-sd}\\
\end{eqnarray}\)
となる。\(\zeta^n=e\) なので、\(\zeta^{n(d-1)}=e\) であることを用いると、
\(\begin{eqnarray}
&&\:\:\sg^{n-s}(\sqrt[n]{a})&=\sqrt[n]{a}\:\zeta^{n-sd}\\
&&&=\sqrt[n]{a}\:\zeta^{r}\\
\end{eqnarray}\)
と計算できる。\(\sg^{s}\) はガロア群の元なので、\(\sg^{n-s}=\sg^{-s}\) もガロア群の元である。従って \(\sg^{n-s}(\sqrt[n]{a})\) は \(f(x)=0\) の解である。

ここでもし \(r\) がゼロでないとすると、\(1\) 以上、\(d\) 未満の数である \(r\) があって、\(\sqrt[n]{a}\:\zeta^{r}\) が \(f(x)=0\) の解となってしまう。しかしこれは、\(f(x)=0\) の解である \(\sqrt[n]{a}\:\zeta^{t}\) の \(t\) の最小値が \(d\) との仮定に反する。従って \(r=0\) である。

\(n=sd\) なので、
 \(\sqrt[n]{a},\:\sqrt[n]{a}\:\zeta,\:\sqrt[n]{a}\:\zeta^2,\:\cd\:,\:\sqrt[n]{a}\:\zeta^{n-1}\)
の中に \(f(x)=0\) の解は \(s\) 個あり、
 \(\sqrt[n]{a},\:\sqrt[n]{a}\:\zeta^{d},\:\:\sqrt[n]{a}\:\zeta^{2d},\:\cd\:,\:\sqrt[n]{a}\:\zeta^{(s-1)d}\)
である。\(\mr{Gal}(\bs{K}(\sqrt[n]{a})/\bs{K})\) は位数 \(s\) の巡回群であり、位数は \(n\) の約数である。\(n\) が素数 \(p\) であれば、\(\mr{Gal}(\bs{K}(\sqrt[p]{a})/\bs{K})\) は \(p\)次の巡回群である。[証明終]


この定理から分かることは、あらかじめ必要な原始\(n\)乗根を "仕込んで" おけば、べき根拡大列は巡回拡大列になるということです。たとえば、べき根拡大の列、
 \(\bs{Q}\:\subset\:\bs{K}\:\subset\:\bs{L}\)
があり、\(\bs{K}/\bs{Q}\) の拡大次数を \(n_1\)、\(\bs{L}/\bs{K}\) の拡大次数を \(n_2\) とします。\(n_1,\:n_2\) の最小公倍数を \(n\)、\(1\) の原始\(n\)乗根を \(\zeta\) とします。そして、
 \(\bs{Q}\:\subset\:\bs{Q}(\zeta)\:\subset\:\bs{K}\:\subset\:\bs{L}\)
の拡大列を考えると、\(\bs{Q}(\zeta)\) には、
 \(1\) の原始\(n_1\)乗根 : \(\zeta^{\frac{n}{n_1}}\)
 \(1\) の原始\(n_2\)乗根 : \(\zeta^{\frac{n}{n_2}}\)
が含まれているので、
 \(\bs{Q}(\zeta)/\bs{Q}\) : 累巡回拡大(63F
 \(\bs{K}/\bs{Q}(\zeta)\) : 巡回拡大(63H
 \(\bs{L}/\bs{K}\) : 巡回拡大(63H
となり、合わせると
 \(\bs{L}/\bs{Q}\) : 累巡回拡大
になります。ここまでくると、可解性の必要条件の証明まであと一歩です。


6.4 可解性の必要条件


可解性の必要条件を証明する最終段階にきました。\(\bs{Q}\) 上の既約な方程式の解の一つを \(\al\) とし、\(\bs{K}=\bs{Q}(\al)\) の拡大体を考えます。\(\al\) が四則演算とべき根で表現できるということは、\(\bs{K}/\bs{Q}\) が累べき根拡大(63G)であるということです。ここが出発点です。そして証明の方針として、

① \(\bs{K}/\bs{Q}\) が累べき根拡大
② \(\bs{K}/\bs{Q}\) が累巡回拡大
③ ガロア拡大
④ ガロア群が可解群

の4つが密接に関係していることを示します。

まず、原始\(\bs{n}\)乗根を含むべき根拡大の定理(63H)により、累べき根拡大の拡大のステップに必要な原始\(n\)乗根の全種類をあらかじめ \(\bs{Q}\) に含めておけば、① 累べき根拡大は ② 累巡回拡大と同じことなります。

さらに、累巡回拡大ガロア群の可解性62C)の定理により、もし \(\bs{K}/\bs{Q}\) が ③ ガロア拡大であれば、累巡回拡大 \(\bs{K}/\bs{Q}\) のガロア群 \(\mr{Gal}(\bs{K}/\bs{Q})\) は ④ 可解群です。

しかし、累巡回拡大の定義62B)のところで書いたように、\(\bs{K}/\bs{Q}\) が累巡回拡大であってもガロア拡大であるとは限りません。そこで、
 \(\bs{Q}\:\subset\:\bs{K}\:\subset\:\bs{E}\)
となるような \(\bs{E}\) で、\(\bs{E}/\bs{Q}\) が累巡回拡大、かつガロア拡大である \(\bs{E}\) が必ず存在することを証明できれば、① \(\rightarrow\) ② \(\rightarrow\) ③ \(\rightarrow\) ④ が一気通貫でつながることになります。このような \(\bs{E}\)(そこには \(\al\) が含まれる)の存在を、累巡回拡大の定義62B)の説明で書いたシンプルな例で考察します。


代数的数 \(\al\) を、
 \(\al=\sqrt{\sqrt{2}+1}\)
とします。この \(\al\) は \(\bs{Q}\) 上の既約な方程式、
 \(f(x)=x^4-2x^2-1=0\)
の解の一つです。この \(f(x)\) は \(\al\) の最小多項式です。ちなみに \(f(x)\) は、
 \(f(x)=(x^2-(\sqrt{2}+1))(x^2+(\sqrt{2}-1))\)
と変形できるので、方程式 \(f(x)=0\) の解は
 \(x=\pm\sqrt{\sqrt{2}+1},\:\:\:\pm i\sqrt{\sqrt{2}-1}\)
の4つです。

\(\al\) を含む \(\bs{Q}\) の拡大体 \(\bs{Q}(\al)\) を考えます。\(\bs{Q}\:\subset\:\bs{Q}(\al)\) ですが、べき根拡大だけで表現すると、

 \(\bs{Q}\:\subset\:\bs{Q}(\sqrt{2})\:\:\subset\:\bs{Q}(\sqrt{\sqrt{2}+1})\)

の累べき根拡大になります。つまり、\(\bs{Q}\) 上の方程式、
 \(x^2-2=0\)
の解の一つ \(\sqrt{2}\) を \(\bs{Q}\) に添加してべき根拡大をし、\(\bs{Q}(\sqrt{2})\) 上の方程式、
 \(x^2-(\sqrt{2}+1)=0\)
の解の一つ \(\sqrt{\sqrt{2}+1}\) を \(\bs{Q}(\sqrt{2})\) に添加したのが \(\bs{Q}(\sqrt{\sqrt{2}+1})\) です。2つのべき根拡大の拡大次数は2です。\(1\) の原始2乗根は \(-1\) なので、始めから \(\bs{Q}\) に含まれています。従って、
 \(\bs{Q}\:\subset\:\bs{Q}(\sqrt{2})\) は
  ・べき根拡大
  ・巡回拡大
    \(\mr{Gal}(\bs{Q}(\sqrt{2})=\{\sg_1,\:\sg_2\}\)
     \(\sg_1=e\)
     \(\sg_2(\sqrt{2})=-\sqrt{2}\)
  ・\(\bs{Q}(\sqrt{2})\) は \(\bs{Q}\) 上の多項式 \(x^2-2\) の最小分解体
となります。まったく同様に、
 \(\bs{Q}(\sqrt{2})\:\subset\:\bs{Q}(\sqrt{\sqrt{2}+1})\) は
  ・べき根拡大
  ・巡回拡大
です。しかし、\(\bs{Q}(\sqrt{\sqrt{2}+1})/\bs{Q}\) がガロア拡大ではありません。というのも、\(\bs{Q}(\sqrt{\sqrt{2}+1})\) は \(\bs{Q}\) 上ではなく \(\bs{Q}(\sqrt{2})\) 上の方程式、
 \(x^2-(\sqrt{2}+1)=0\)
の解の一つ \(\sqrt{\sqrt{2}+1}\) を \(\bs{Q}(\sqrt{2})\) に添加したものだからです。

そこで、\(\bs{Q}(\sqrt{2})\) 上の2つの方程式、
 ・\(x^2-\sg_1(\sqrt{2}+1)=0\)
 ・\(x^2-\sg_2(\sqrt{2}+1)=0\)
の解を順に \(\bs{Q}(\sqrt{2})\) に追加することにします。つまり、
 ・\(\sqrt{\phantom{-}\sqrt{2}+1}\)
 ・\(\sqrt{-\sqrt{2}+1}\)
の2つを \(\bs{Q}(\sqrt{2})\) に追加します。ガロア群は必ず単位元 \(e\) を含むので、\(\sg_1(\sqrt{2}+1)\) と \(\sg_2(\sqrt{2}+1)\) のどちらかは \(\al=\sqrt{\sqrt{2}+1}\) になります。この追加は2つともべき根拡大であり、巡回拡大です。こうして出来上がった拡大体を \(\bs{E}\) とすると、
 \(\bs{E}=\bs{Q}(\sqrt{\sqrt{2}+1},\sqrt{-\sqrt{2}+1})\)
です。以上のことを別の観点で言うと、多項式 \(g(x)\) を、
 \(g(x)=(x^2-\sg_1(\sqrt{2}+1))(x^2-\sg_2(\sqrt{2}+1))\)
と定義するとき、
 \(g(x)=0\) の解を \(\bs{Q}(\sqrt{2})\) に追加したのが \(\bs{E}\)
ということになります。\(g(x)\) を計算すると、
\(\begin{eqnarray}
&&\:\:g(x)&=(x^2-\sg_1(\sqrt{2}+1))(x^2-\sg_2(\sqrt{2}+1))\\
&&&=(x^2-(\sqrt{2}+1))(x^2+(\sqrt{2}-1))\\
&&&=x^4-2x^2-1\\
\end{eqnarray}\)
となり、\(g(x)\) は \(\bs{Q}\) 上の多項式です。なぜそうなるかと言うと、\(g(x)\) の係数は \(\sg_1(\sqrt{2}+1)\) と \(\sg_2(\sqrt{2}+1)\) の対称式で表されるからで、従ってガロア群の元 \(\sg_1,\:\sg_2\) を作用させても不変であり、つまり係数が有理数だからです。ここから得られる結論は、
 \(\bs{E}\) は \(\bs{Q}\) 上の多項式 \(g(x)\) の最小分解体である
ということです。このことは、\(\al=\sqrt{\sqrt{2}+1}\) の最小多項式が \(x^4-2x^2-1=g(x)\) であったことからも確認できます。従ってガロア拡大の定義(52A)により、
 \(\bs{E}/\bs{Q}\) はガロア拡大
です。まとめると、
 \(\bs{Q}\:\subset\:\bs{Q}(\al)\:\subset\:\bs{E}\)
  \(\bs{E}/\bs{Q}\) は累巡回拡大、かつガロア拡大
である \(\bs{E}\) の存在が証明できました。


以上は "2段階の2次拡大" という非常にシンプルな例ですが、このことを一般的に(多段階の \(n\)次拡大で)述べると次のようになります。

ガロア閉包
ガロア閉包の存在:64A)

\(\bs{Q}\) 上の方程式 \(f(x)=0\) の解の一つである \(\al\) がべき根で表されているとする。このとき「\(\bs{Q}\) のガロア拡大 \(\bs{E}\) で、\(\al\) を含み、\(\bs{E}/\bs{Q}\) が累巡回拡大」であるような 代数拡大体 \(\bs{E}\) が存在する。


[証明]

\(\bs{Q}\)上の方程式 \(f(x)=0\) の解の一つ \(\al\) がべき根で表されているとき、

\(\bs{Q}=\bs{K}_0\subset\bs{K}_1\subset\cd\subset\bs{K}_i\subset\bs{K}_{i+1}\subset\cd\subset\bs{K}_k=\bs{K}\)

・ \(\bs{K}_{i+1}=\bs{K}_i(\al_{i+1})\)
・ \(\al_{i+1}\) は \(x^{n_i}-a_i=0\:(a_i\in\bs{K}_i)\) の根の一つ
・ \([\bs{K}_{i+1}:\bs{K}_i]=n_i\)
・ \(\al_k=\al\:\in\:\bs{K}_k=\bs{K}\)

となる、べき根拡大列 \(\bs{K}_i\) が存在する(= \(\bs{K}/\bs{Q}\) が累べき根拡大)。このべき根拡大列を修正して、

\(\bs{Q}\subset\bs{F}_0\subset\bs{F}_1\subset\cd\subset\bs{F}_i\subset\bs{F}_{i+1}\subset\cd\subset\bs{F}_k=\bs{E}\)

・ \(\bs{K}_i\:\subset\:\bs{F}_i\)
・ \(\bs{F}_{i+1}/\bs{F}_i\) は累巡回拡大
・ \(\bs{E}/\bs{Q}\) はガロア拡大
・ \(\al_k=\al\:\in\:\bs{K}_k\:\subset\:\bs{F}_k=\bs{E}\)

とできることを以下に示す。まず、\(n_i\:(0\leq i < k)\) の最小公倍数を \(n\) とし、\(1\) の原始\(n\)乗根を \(\zeta\) とする。そして、
 \(\bs{F}_0=\bs{Q}(\zeta)\)
とおくと、\(\bs{K}_0(=\bs{Q})\:\subset\:\bs{F}_0\) であり、\(\bs{F}_0\) は \(1\) の原始\(n_i\)乗根 \((0\leq i < k)\) を全て含むことになる。

\(\bs{F}_0\) は \(\bs{Q}(\zeta)\) だから、\(\mr{Gal}(\bs{F}_0/\bs{Q})=\mr{Gal}(\bs{Q}(\zeta)/\bs{Q})\) は巡回群の直積に同型であり(63F)、従って可解群である(61B)。つまり、\(\bs{F}_0/\bs{Q}\) は累巡回拡大である(62C)。

次に、
 \(\bs{F}_1=\bs{F}_0(\al_1)\)
とおく。\(\al_1\) は \(\bs{K}_0=\bs{Q}\) 上の方程式 \(x^{n_0}-a_0=0\:(a_0\in\bs{K}_0\:\subset\:\bs{F}_0)\) の根の一つで、\(\al_1=\sqrt[n_0]{a_0}\) であるから、\(\bs{F}_1\) は \(\bs{F}_0\) のべき根拡大になる。

すると、\(\bs{F}_0\)は \(1\) の原始\(n_0\)乗根を含むから、原始\(\bs{n}\)乗根を含むべき根拡大の定理(63H)により、\(\bs{F}_1/\bs{F}_0\) は巡回拡大である。この拡大次数は \([\bs{F}_1:\bs{F}_0]=[\bs{K}_1:\bs{K}_0(=\bs{Q})]=n_0\) である。

また \(\bs{F}_1\)は、\(\bs{Q}\) 上の方程式 \(x^{n_0}-a_0=0\) の解 \(\al_1\eta^j\)(\(\eta\) は \(1\) の原始\(n_0\)乗根。\(0\leq j < n_0\))をすべて含むから、\(\bs{F}_1/\bs{Q}\) はガロア拡大である。


次に \(\bs{K}_2\) を修正した \(\bs{F}_2\) を考える。\(\mr{Gal}(\bs{F}_1/\bs{Q})\) の元を \(\sg_j\:(1\leq j\leq m,\:\sg_1=e)\) の \(m\)個とする。

\(\al_2\) は \(x^{n_1}-a_1=0\:\:(a_1\in\bs{K}_1\:\subset\:\bs{F}_1)\) の根の一つであった。そこで、
 \(\sg_j(a_1)\) \((1\leq j\leq m)\)
という \(m\)個の元をもとに、
 \(x^{n_1}-\sg_j(a_1)=0\:(a_1\in\bs{K}_1\:\subset\:\bs{F}_1,\:\:1\leq j\leq m)\)
という \(m\)個の方程式群を考える。\(\sg_j\) の中には単位元 \(e\) が含まれるため、\(x^{n_1}-a_1=0\) も方程式群の中の一つである。

この \(m\)個の方程式の \(m\)個の解、
 \(\sqrt[n_1]{\sg_j(a_1)}\) \((1\leq j\leq m)\)
を \(\bs{F}_1\) に順々に添加していき、最終的にできた体を \(\bs{F}_2\) とする。\(\bs{F}_1\) は \(1\) の原始 \(n_1\)乗根を含むから、\(\sqrt[n_1]{\sg_j(a_1)}\) \((1\leq j\leq m)\) の添加はすべて巡回拡大である(63H)。つまり、\(\bs{F}_2\) は \(\bs{F}_1\) の累巡回拡大である。\(\sg_j\) の中には単位元があるから、\(\bs{F}_2\) には \(\al_2=\sqrt[n_1]{a_1}\) を含む。

ここで多項式 \(g(x)\) を、
 \(g(x)=\displaystyle\prod_{j=1}^{m}(x^{n_1}-\sg_j(a_1))\)
と定義する。\(\bs{F}_1\) は \(1\) の原始 \(n_1\)乗根を含むから、\(\bs{F}_2\) は \(g(x)=0\) のすべての解を \(\bs{F}_1\) に添加した拡大体である。

多項式 \(g(x)\) の係数は、根と係数の関係から \(\sg_j(a_1)\:\:(1\leq j\leq m)\) の対称式であり、係数に任意の \(\sg_j\:(=\mr{Gal}(\bs{F}_1/\bs{Q})\) の元\()\) を作用させても不変である。つまり係数は有理数であり、\(g(x)\) は \(\bs{Q}\) 上の多項式である。結局、\(\bs{F}_2\) は \(\bs{Q}\) 上の多項式 \(g(x)\) の最小分解体であり、\(\bs{F}_2/\bs{Q}\) はガロア拡大である(52A)。

まとめると、
・ \(a_1\:\in\:\bs{K}_1\:\subset\:\bs{F}_1\)
・ \(\bs{F}_1\) には \(1\) の原始\(n_1\)乗根が含まれる
・ \(\al_2\) は \(x^{n_1}-a_1=0\) の根の一つ
・ \(\mr{Gal}(\bs{F}_1/\bs{Q})\) の元が \(\sg_j\:(1\leq j\leq m,\:\:\:\sg_1=e)\)
で、かつ、
  \(g(x)=\displaystyle\prod_{j=1}^{m}(x^{n_1}-\sg_j(a_1))\)
の条件で、\(g(x)=0\) のすべての解を \(\bs{F}_1\) に添加した拡大体を \(\bs{F}_2\) とすると、
・ \(\bs{F}_2/\bs{F}_1\) 累巡回拡大
・ \(\bs{F}_2/\bs{Q}\) はガロア拡大
・ \(\al_2\:\in\:\bs{K}_2\:\subset\:\bs{F}_2\)
となる。


この \(\bs{K}_i\) を \(\bs{F}_i\) に修正する操作は、\(\bs{K}_k\) を修正して \(\bs{F}_k\) にするまで続けることができる。従って、
\(\bs{Q}\subset\bs{F}_0\subset\bs{F}_1\subset\cd\subset\bs{F}_i\subset\bs{F}_{i+1}\subset\cd\subset\bs{F}_k=\bs{E}\)
の拡大列が存在し、
・ \(\bs{K}\:\subset\:\bs{F}_i\)
・ \(\bs{F}_{i+1}/\bs{F}_i\) は累巡回拡大
・ \(\bs{F}_k/\bs{Q}\) はガロア拡大
・ \(\al_k=\al\:\in\:\bs{F}_k(=\bs{E})\)
とすることができる。[証明終]

ガロア閉包.jpg

\(1\) の原始\(n\)乗根を含む \(\bs{Q}(\zeta)\) からのべき根拡大を考えることによって、体の拡大が巡回拡大(=ガロア群が巡回群であるガロア拡大)になり(63H)、その繰り返しは累巡回拡大になります。しかし累巡回拡大が "全体としてガロア拡大になる" とは限りません(62B)。

そこで、ひと工夫して、\(\bs{\bs{F}_i}\) が常に \(\bs{\bs{Q}}\) 上の方程式 \(\bs{g(x)}\) の最小分解体で、かつ \(\bs{\al_i}\) を含むようにすると、\(\bs{F}_i/\bs{Q}\) が常にガロア拡大になっているので、\(\bs{E}/\bs{Q}\) もガロア拡大になります。しかも最終到達点である \(\bs{F}_k=\bs{E}\) の中には、元々の方程式の解である \(\al\) がある。このような \(\bs{E}\) の存在が重要です。この \(\bs{Q}(\zeta)\:\rightarrow\:\bs{E}\) の拡大を考えることで、単なるべき根拡大列だった \(\bs{Q}\:\rightarrow\:\bs{K}\) をガロア理論の俎上に乗せることができます。

一方、\(\bs{\bs{Q}(\zeta)/\bs{Q}}\) が累巡回拡大になるのは、全く別のロジックによります。つまり、\(\bs{Q}(\zeta)/\bs{Q}\) がガロア拡大で(63D)かつ、ガロア群が巡回群の直積に同型(63F)であり、従ってガロア群が可解群(61B)だからです。そうすると累巡回拡大ガロア群の可解性62C)によって \(\bs{Q}(\zeta)/\bs{Q}\) は累巡回拡大です。

以上の2つの合わせ技で、\(\bs{Q}\) から \(\bs{E}\) に至る累巡回拡大の列ができ、しかも \(\bs{E}/\bs{Q}\) がガロア拡大になっていて、次の可解性の必要条件の証明につながります。

可解性の必要条件
可解性の必要条件:64B)

\(\bs{Q}\) 上の \(n\)次既約方程式 \(f(x)=0\) の解の一つ がべき根で表されているとする。\(f(x)\) の最小分解体を \(\bs{L}\) とするとき、\(\mr{Gal}(\bs{L}/\bs{Q})\) は可解群である。


[証明]

ガロア閉包の存在定理(64A)により、\(\bs{Q}\) 上の方程式 \(f(x)=0\) の解の一つがべき根で表されているとすると、
\(\bs{Q}=\bs{K}_0\subset\bs{K}_1\subset\cd\subset\bs{K}_i\subset\bs{K}_{i+1}\subset\cd\subset\bs{K}_k=\bs{E}\)
という拡大列で、
・ \(\bs{E}/\bs{Q}\) は累巡回拡大
・ \(\bs{E}/\bs{Q}\) はガロア拡大
・ \(\al\:\in\:\bs{E}\)
となるものが存在する。\(\bs{E}/\bs{Q}\) がガロア拡大なので、\(\mr{Gal}(\bs{E}/\bs{Q})\) による \(\al\) の移り先(\(f(x)=0\) の解)は \(\bs{E}\) に含まれる。最小分解体 \(\bs{L}\) は \(f(x)=0\) の \(n\)個の解を含む最小の体である。ゆえに \(\bs{E}\) は最小分解体 \(\bs{L}\) を含んでいる。

また、\(\bs{E}/\bs{Q}\) がガロア拡大ということは、中間体からのガロア拡大の定理(52C)により、\(\bs{E}/\bs{L}\) もガロア拡大である。従って、
 \(\mr{Gal}(\bs{E}/\bs{Q})=G\)
 \(\mr{Gal}(\bs{E}/\bs{L})=H\)
と書くと、
 \(G\) \(\sp\) \(H\) \(\sp\) \(\{\:e\:\}\)
 \(\bs{Q}\) \(\subset\) \(\bs{L}\) \(\subset\) \(\bs{E}\)
ガロア対応53B)が成り立つ。

\(\bs{L}\) は \(\bs{Q}\) 上の既約多項式 \(f(x)\) の最小分解体だから、\(\bs{L}/\bs{Q}\) はガロア拡大である(52A)。ゆえに正規性定理53C)により、\(H\) は \(G\) の正規部分群であり、
 \(\mr{Gal}(\bs{L}/\bs{Q})\:\cong\:G/H\)
が成り立つ。

\(\bs{E}/\bs{Q}\) はガロア拡大かつ累巡回拡大だから、累巡回拡大ガロア群の可解性62C)の定理によって \(G\) は可解群である。\(G\) が可解群なので、その剰余群である \(G/H\) も可解群である(61D)。従って、\(G/H\) と同型である \(\mr{Gal}(\bs{L}/\bs{Q})\) も可解群である。[証明終]


この定理の対偶をとると、

\(\bs{Q}\) 上の既約方程式 \(f(x)=0\) の最小分解体を \(\bs{L}\) とするとき、\(\mr{Gal}(\bs{L}/\bs{Q})\) が可解群でなければ、\(f(x)=0\) の解のすべてはべき根で表されない(=非可解)

となります。これを用いて、非可解な5次方程式があることを証明できます。


6.5 5次方程式の解の公式はない


5次方程式には解の公式はないことをガロア理論で証明します。そのためにまず、対称群、交代群、置換の説明をします。

対称群 \(S_n\)
集合 \(\Omega_n=\{1,\:2,\:\cd\:n\}\) から \(\Omega_n\) への全単射写像(1対1写像)の全体を \(S_n\) と書き、\(n\)次の対称群(symmetric group)と言います。\(1,\:2,\:\cd\) は整数ではなく、集合の元を表す文字です。一般に集合 \(X\) から \(X\) への全単射写像を置換(permutation)と呼ぶので、\(S_n\) の元は \(n\) 個の文字の置換です。

\(S_n\) の元の一つを \(\sg\) とします。\(1\leq k\leq n\) とし、\(\sg\)による \(k\) の移り先を \(\sg(k)\) とすると、\(\sg\) は全単射写像なので、\(k\neq k\,'\) なら\(\sg(k)\neq\sg(k\,')\) です。従って、\((\sg(1),\sg(2),\cd,\sg(n))\) は、\((1,2,\cd n)\) の一つの順列になります。逆に、\((1,2,\cd n)\) の順列の一つを \((i_1,i_2,\cd i_n)\) とすると、\(\sg(k)=i_k\) で \(\Omega_n\) から \(\Omega_n\) への全単射写像が得られます。つまり \(S_n\) は \((1,2,\cd n)\) のすべての順列と同一視できます。

\(S_n\) の元の2つを \(\sg\)、\(\tau\) とし、\(\sg\) と \(\tau\) の合成写像 \(\sg\tau\) を、
 \(\sg\tau(k)=\sg(\tau(k))\:\:(1\leq k\leq n)\)
で定義すると、\(\sg\tau\) も全単射写像なので \(S_n\) の元であり、\(S_n\) は群になります。単位元 \(e\) は \(e(k)=k\:(1\leq k\leq n)\) である恒等写像です。また、\(\sg\) は全単射写像なので逆写像 \(\sg^{-1}\) があり、群の定義を満たしています。

\(S_n\) は \((1,2,\cd n)\) のすべての順列と同一視できるので、その位数は
 \(|S_n|=n\:!\)
です。\(S_n\) の元 \(\sg\) を、
 \(\sg=\left(\begin{array}{c}1&2&\cd&n\\\sg(1)&\sg(2)&\cd&\sg(n)\end{array}\right)\)
と表します。この表記では縦の列が合っていればよく、並び順に意味はありません。これを使うと \(\sg\) の逆元は、
 \(\sg^{-1}=\left(\begin{array}{c}\sg(1)&\sg(2)&\cd&\sg(n)\\1&2&\cd&n\end{array}\right)\)
です。

\(S_3\) の元を \(\sg_1,\sg_2,\:\cd\:\sg_6\) とし、具体的に書いてみると、
 \(\sg_1=\left(\begin{array}{c}1&2&3\\1&2&3\end{array}\right)\) \(\sg_2=\left(\begin{array}{c}1&2&3\\2&3&1\end{array}\right)\)
 \(\sg_3=\left(\begin{array}{c}1&2&3\\3&1&2\end{array}\right)\) \(\sg_4=\left(\begin{array}{c}1&2&3\\1&3&2\end{array}\right)\)
 \(\sg_5=\left(\begin{array}{c}1&2&3\\3&2&1\end{array}\right)\) \(\sg_6=\left(\begin{array}{c}1&2&3\\2&1&3\end{array}\right)\)
となります。\(\sg_1\) は恒等置換 \(e\) です。なお \(S_3\) は、1.3節に出てきた3次の2面体群と同じものです。

 巡回置換 

\(S_n\) に現れる \(n\)文字からその一部を取り出します。例えば3つ取り出して、\(i,\:j,\:k\) とします。そして、
 \(i\rightarrow j,\:\:j\rightarrow k,\:\:k\rightarrow i\)
と文字を循環させ、その他の文字は不動にする置換 \(\sg\) を考えます。これが巡回置換(cyclic permutation)です。
 \(\sg=\left(\begin{array}{c}\cd&i&\cd&j&\cd&k&\cd\\\cd&j&\cd&k&\cd&i&\cd\end{array}\right)\)
と表せて、\(\cd\) の部分は不動です。これを簡略化して、
 \(\sg=(i,\:j,\:k)\)
と表記します。\(\sg\) の逆元は、
 \(\sg^{-1}\)\(=(i,\:j,\:k)^{-1}\)
\(=\left(\begin{array}{c}\cd&i&\cd&j&\cd&k&\cd\\\cd&j&\cd&k&\cd&i&\cd\end{array}\right)^{-1}\)
\(=\left(\begin{array}{c}\cd&j&\cd&k&\cd&i&\cd\\\cd&i&\cd&j&\cd&k&\cd\end{array}\right)\)
\(=\left(\begin{array}{c}\cd&i&\cd&j&\cd&k&\cd\\\cd&k&\cd&i&\cd&j&\cd\end{array}\right)\)
\(=(k,\:j,\:i)\)
です。一般に \(m\)文字の巡回置換 \((1\leq m\leq n)\) は、
 \(\sg=(i_1,\:i_2,\:\cd\:,i_m)\)
です。長さ \(m\) の巡回置換、とも言います。逆元は文字の順序を逆順にした、
 \(\sg^{-1}=(i_m,\:i_{m-1},\:\cd\:,i_1)\)
です。\(m\)文字の巡回置換を群としてとらえたとき、 \(C_m\) で表します。\(C_m\) は位数 \(m\) の巡回群で、可換群です。

特に、2文字の巡回置換を互換(transposition)と言います。巡回置換と互換について、次の定理が成り立ちます。


置換は巡回置換の積:65A)

すべての置換は共通文字を含まない巡回置換の積で表せる。


[証明]

\(n\)次対称群 \(S_n\) の任意の元を \(\sg\) とすると、\(\sg\) は \(n\)文字の任意の置換である。\(n\)文字の中から \(\sg(a)\neq a\) である文字 \(a\) を選ぶ。そして \(\sg(a),\:\sg^2(a),\:\sg^3(a),\:\cd\) という、\(\sg\) による \(a\) の写像を繰り返す列を考える。\(\sg\)による \(a\) の移り先は最大 \(n\)個なので、列の中には、
 \(\sg^j(a)=\sg^i(a)\:\:(i < j)\)
となる \(i,\:j\) が必ず出てくる。つまり、
 \(\sg^{j-i}(a)=a\)
となる \(i,\:j\) が存在する。\(k_a\) を \(\sg^{k_a}(a)=a\) となる最小の数とすると、
 \(\sg(a),\:\sg^2(a),\:\cd\:,\sg^{k_a}(a)=a,\:\sg(a),\:\cd\)
 \((\br{A})\)
となり、\(k_a+1\)番目で \(\sg(a)\) に戻って以降は巡回する。\(\sg_1\) を、
 \(\sg_1=(\sg(a),\:\sg^2(a),\:\cd\:,\sg^{k_a}(a))\)
の巡回置換と定義する。

もし仮に列 \((\br{A})\) が、\(\sg\) で変化する文字全部を尽くしているなら、題意は正しい。そうでないとき、列 \((\br{A})\) に現れない文字で \(\sg(b)\neq b\) である \(b\) を選ぶ。上と同様にして、
 \(\sg(b),\:\sg^2(b),\:\cd\:,\sg^{k_b}(b)=b\)
 \((\br{B})\)
の列が作れる。\((\br{B})\) 列に \((\br{A})\) 列と同じ文字は現れない。なぜなら、もし列 \((\br{B})\) の \(\sg^i(b)\) が \((\br{A})\) 列に現れるとすると、\(\sg^i(b)\) に \(\sg\) による置換を繰り返すといずれは \(b\) になるから、\(b\) が \((\br{A})\) 列に現れることになってしまい、「列 \((\br{A})\) に現れない文字 \(b\)」ではなくなるからである。従って、
 \(\sg_2=(\sg(b),\:\sg^2(b),\:\cd\:,\sg^{k_b}(b)=b)\)
という、2つ目の巡回置換が定義できる。列 \((\br{A})\) と \((\br{B})\) が \(\sg\) で変化する文字全部を尽くすなら、\(\sg=\sg_2\sg_1\) である。\(\sg_1\) と \(\sg_2\) に共通の文字は現れないので、\(\sg=\sg_1\sg_2\) と書いてもよい。

以上の操作は、\(\sg\) で変化する文字全部を尽くすまで繰り返すことができる。その繰り返し回数を \(m\) とすると、
 \(\sg=\sg_1\sg_2\:\cd\:\sg_m\)
であり、任意の置換 \(\sg\) は巡回置換の積で表せることになる。なお、恒等置換 \(e\) は、
 \(e=(i,\:j)^2\)
 \(e=(i,\:j,\:k)^3\)
などであり、巡回置換の積で表せることに変わりはない。[証明終]


置換を巡回置換の積で表すと、例えば、
 \(\sg\)\(=\left(\begin{array}{c}1&2&3&4&5&6\\1&4&5&6&3&2\end{array}\right)\)
\(=(2,\:4,\:6)(3,\:5)\)
となります。


置換は互換の積:65B)

すべての置換は互換の積で表せる。


[証明]

巡回置換 \((1,\:2,\:3)\) は
 \((1,\:2,\:3)=(1,\:3)(1,\:2)\)
と表せる(積は右から読む)。また、巡回置換 \((1,\:2,\:3\). \(4)\) は、
 \((1,\:2,\:3,\:4)=(1,\:4)(1,\:3)(1,\:2)\)
である。一般に、
 \((i_1,\:i_2,\:\cd\:,i_m)=(i_1,\:i_m)\:\cd\:(i_1,\:i_2)\)
である。このように巡回置換は互換の積で表せる。すべての置換は巡回置換の積で表せる(65A)ので、題意は正しい。[証明終]

交代群 \(A_n\)
一つの置換を互換の積で表す方法が一意に決まるわけではありません。たとえば、
 \((1,\:2,\:3)\)\(=(1,\:3)(1,\:2)\)
\(=(1,\:3)(2,\:3)(1,\:2)(1,\:3)\)
です(積は右から読む)。ただし、積に現れる互換の数が偶数か奇数かは一意に決まります。


置換の偶奇性:65C)

一つの置換を互換の積で表したとき、その互換の数は奇数か偶数かのどちらかに決まる。


[証明]

\(n\)変数の多項式 \(f(x_1,x_2,\cd,x_n)\) を、
 \(f(x_1,x_2,\cd,x_n)=\displaystyle\prod_{1\leq i < j\leq n}^{}(x_i-x_j)\)
と定義する(差積と呼ばれる)。\(S_n\) の一つの元を \(\sg\) とし、\(\sg\) を \(f(x_1,x_2,\cd,x_n)\) に作用させることを、
 \(\sg\cdot f(x_1,x_2,\cd,x_n)=f(x_{\sg(1)},x_{\sg(2)},\cd,x_{\sg(n)})\)
と定義する。\(\sg\) が互換、つまり \(\sg=(i,\:j)\) であれば、
 \((i,\:j)\cdot f(x_1,x_2,\cd,x_n)=-f(x_1,x_2,\cd,x_n)\)
となる。これはすべての互換で成り立つ。

\(\sg\) が \(k\)個の互換の積で表されていると、
 \(\sg\cdot f(x_1,x_2,\cd,x_n)=(-1)^kf(x_1,x_2,\cd,x_n)\)
である。もし、\(m\neq k\) として \(\sg\) が \(m\)個の互換の積で表せたとしたら、
 \(\sg\cdot f(x_1,x_2,\cd,x_n)=(-1)^mf(x_1,x_2,\cd,x_n)\)
である。従って、
 \((-1)^k=(-1)^m\)
であり、\(k\) と \(m\) の偶奇は等しい。[証明終]


置換の偶奇性65C)により、置換は2つのタイプに分けることができます。偶数個の互換の積で表す置換を偶置換(even permutaion)、奇数個の互換の積で表す置換を奇置換(odd permutaion)と言います。

偶置換の積は偶置換です。従って、\(S_n\) の偶置換の元を集めた集合は群になります。これを \(n\)次交代群(alternating group)といい、\(A_n\) で表します。


交代群は正規部分群:65D)

\(S_n\) の元は同数の偶置換と奇置換から成る。従って、
 \([\:S_n\::\:A_n\:]=2\)
である。

\(A_n\) は \(S_n\) の正規部分群であり、\(S_n/A_n\) は巡回群である。


[証明]

\(B_n\) を \(S_n\) に含まれる奇置換の集合とする。\(S_n\) の任意の互換を \(\sg\) とすると、集合 \(\sg A_n\) のすべての元は奇置換だから、
 \(\sg A_n\subset B_n\)
が成り立つ。それとは逆に、集合 \(\sg B_n\) のすべての元は偶置換だから、
 \(\sg B_n\subset A_n\)
も成り立つ。この式に左から \(\sg\) を作用させると、
 \(\sg^2B_n\subset\sg A_n\)
 \(B_n\subset\sg A_n\)
となる。\(\sg A_n\subset B_n\) かつ \(B_n\subset\sg A_n\) なので、
 \(B_n=\sg A_n\)
となり、\(B_n\) と \(A_n\) の元の数は等しい。\(S_n=A_n\cup B_n\) なので、
 \([\:S_n\::\:A_n\:]=2\)
である。

\(S_n\) の部分群 \(A_n\) の元の数は \(S_n\) の元の数の半分なので、\(S_n\) は \(A_n\) の2つの左剰余類(または右剰余類)の和集合である。従って、\(B_n\) の 任意の元を \(b\) とすると、
 (\(A_n\) の左剰余類) \(S_n=A_n\cup bA_n\:\:(A_n\cap bA_n=\phi)\)
 (\(A_n\) の右剰余類) \(S_n=A_n\cup A_nb\:\:(A_n\cap A_nb=\phi)\)
となり、\(bA_n=A_nb\) である。また \(A_n\) の元 \(a\) については、\(A_n\) が群なので \(aA_n=A_n,\:A_na=A_n\) である。従って \(S_n\) の任意の元 \(\sg\) について \(\sg A_n=A_n\sg\) が成り立ち、\(A_n\) は \(S_n\) の正規部分群である。

\(A_n\) が正規部分群なので、\(S_n/A_n\) は剰余群である。\(S_n\) の任意の元を \(\sg\) とし、\(S_n/A_n\) の元を \(\sg A_n\) とすると、
 \((\sg A_n)^2=\sg A_n\sg A_n=\sg\sg A_nA_n=\sg^2A_n\)
となるが、\(\sg A_n=B_n\) であり \(\sg B_n=A_n\) だから、\(\sg^2A_n=A_n\) である。つまり、
 \((\sg A_n)^2=A_n\)
を満たす。\(A_n\) は 剰余群 \(S_n/A_n\) の単位元だから、\(S_n/A_n\) は巡回群でである。[証明終]


交代群は3文字巡回置換の積:65E)

交代群 \(A_n\) の任意の元は、3文字の巡回置換の積で表せる。


[証明]

\(A_n\) の任意の元は偶数個の互換の積で表せる。この互換の積を2つずつ右から(ないしは左から)取り出すことを考える。2つの互換の積には4つの文字があるが、それには次の2つパターンがある。
 異なる4文字
  \((i,\:j)(k,\:m)\)
 異なる3文字
  \((i,\:j)(i,\:k)\)
異なる3文字のうち、\((i,\:j)(j,\:k)\) のパターンは、\(i\) を \(j\) と読み替え、\(j\) を \(i\) と読み替えると \((j,\:i)(i,\:k)\) となり、\((i,\:j)(i,\:k)\) と同じである。また、\((i,\:j)(k,\:i)\) や \((i,\:j)(k,\:j)\) も \((i,\:j)(i,\:k)\) と同じである。

異なる2文字から成る \((i,\:j)(i,\:j)\) は恒等互換なので無視してよい。

2つの互換の積の2パターンは、いずれも3文字の巡回置換の積で表せる。つまり、
 \(\left(\begin{array}{c}i&j&k&m\\k&i&j&m\end{array}\right)=(i,\:k,\:j)\)
 \(\left(\begin{array}{c}k&i&j&m\\j&i&m&k\end{array}\right)=(j,\:m,\:k)\)
 \(\left(\begin{array}{c}i&j&k&m\\j&i&m&k\end{array}\right)=(i,\:j)(k,\:m)\)
なので、
 \((i,\:j)(k,\:m)=(j,\:m,\:k)(i,\:k,\:j)\)
である。また、巡回置換を互換の積で表す標準的な方法(65B)から、
 \((i,\:j)(i,\:k)=(i,\:k,\:j)\)
である。

\(A_n\) は「2つの互換の積」の積、で表現でき、「2つの互換の積」は「3文字の巡回置換の積」で表せるので、題意は正しい。[証明終]


なお、上の交代群は正規部分群65D)の証明では、「交代群 \(A_n\) の元の数が、対称群 \(S_n\) の元の数の半分である」ことしか使っていません。従って次の定理が成り立ちます。


半分の部分群は正規部分群:65F)

群 \(G\) の部分群を \(N\) とする。
 \(|G|=2|N|\)
のとき(つまり 群の指数 \([G:N]=2\) のとき)、\(N\) は \(G\) の正規部分群である。


対称群の可解性
対称群の可解性:65G)

5次以上の対称群、\(S_n\:\:(n\geq5)\) は可解群ではない。


[証明]

\(S_n\) の交代群を \(A_n\) とする。\(A_n\) は \(S_n\) の部分群なので、もし \(A_n\) が可解群でなければ、可解群の部分群は可解群の定理(61C)の対偶により、\(S_n\) は可解群ではない。以下、\(A_n\) が可解群でないことを背理法で証明する。

\(A_n\) が可解群と仮定して矛盾を導く。\(A_n\) が可解群とすると、定義により \(A_n\) には正規部分群 \(N\:(N\neq A_n)\) があり、\(A_n/N\) が巡回群である。

\(A_n\) の任意の2つの元を \(x,\:y\) とし、剰余類 \(xN\) と \(yN\) を考える。\(A_n/N\) は巡回群なので可換群であり、\(xNyN=yNxN\) である。\(N\) は正規部分群なので、\(Ny=yN\)、\(Nx=xN\) であり、これを用いて \(xNyN=yNxN\) を変形していくと、
 \(xNyN=yNxN\)
 \(xyNN=yxNN\)
 \(xyN=yxN\)
となる。この式に左から \(x^{-1}y^{-1}\) をかけると、
 \(x^{-1}y^{-1}xyN=x^{-1}y^{-1}yxN\)
 \(x^{-1}y^{-1}xyN=N\)
となる。部分群の元の条件の定理(41C)より、\(aN=N\) と \(a\in N\) は同値である。従って、
 \(x^{-1}y^{-1}xy\in N\)
である。

一般に \(x^{-1}y^{-1}xy\) を \(x\) と \(y\) の交換子と呼ぶ。上の式の変形プロセスから言えることは、\(A_n\) の任意の2つの元(\(N\) の元である必要はない)の交換子は \(N\) の元になるということである。

\(S_n\:\:(n\geq5)\) の任意の3文字巡回置換を \((i,\:j,\:k)\) とする。
 \((i,\:j,\:k)=(i,\:k)(i,\:j)\)
なので、\((i,\:j,\:k)\) は偶置換であり、
 \((i,\:j,\:k)\in A_n\)
である。ここで、\(\bs{i,\:j,\:k}\) とは違う2つの文字 \(\bs{l,\:m}\) を選ぶ。\(\bs{n\geq5}\) ならこれは常に可能である。そして、
 \(x=(i,\:m,\:j)\)
 \(y=(i,\:l,\:k)\)
とし、\(x,\:y\) の交換子を作ってみる。計算すると以下のようになる。

 \(x^{-1}y^{-1}xy\)
  \(=(i,\:m,\:j)^{-1}(i,\:l,\:k)^{-1}(i,\:m,\:j)(i,\:l,\:k)\)
  \(=(j,\:m,\:i)(k,\:l,\:i)(i,\:m,\:j)(i,\:l,\:k)\)

 \((i,\:l,\:k)\)\(=\left(\begin{array}{c}i&j&k&l&m\\l&j&i&k&m\end{array}\right)\)
 \((i,\:m,\:j)\)\(=\left(\begin{array}{c}l&j&i&k&m\\l&i&m&k&j\end{array}\right)\)
 \((k,\:l,\:i)\)\(=\left(\begin{array}{c}l&i&m&k&j\\i&k&m&l&j\end{array}\right)\)
 \((j,\:m,\:i)\)\(=\left(\begin{array}{c}i&k&m&l&j\\j&k&i&l&m\end{array}\right)\)

 \(x^{-1}y^{-1}xy\)
  \(=(j,\:m,\:i)(k,\:l,\:i)(i,\:m,\:j)(i,\:l,\:k)\)
  \(=\left(\begin{array}{c}i&j&k&l&m\\j&k&i&l&m\end{array}\right)\)
  \(=(i,\:j,\:k)\)

\(x^{-1}y^{-1}xy\in N\) なので、
 \((i,\:j,\:k)\in N\)
である。つまり任意の3文字巡回置換は \(N\) に含まれる。

\(A_n\) のすべての元は3文字巡回置換の積で表される(65E)から、\(A_n\) は \(N\) の元の積で表せることになる。つまり、
 \(A_n\subset N\)
だが、もともと \(N\) は \(A_n\) の部分集合だから、
 \(A_n=N\)
である。これは \(N\neq A_n\) という仮定と矛盾する。従って、\(A_n\) の正規部分群 \(N\:(N\neq A_n)\) で、\(A_n/N\) が巡回群であるようなものはなく、\(A_n\) は可解群ではない。

\(S_n\:\:(n\geq5)\) は可解群ではない部分群 \(A_n\) をもつから、可解群の部分群は可解群の定理(61C)の対偶によって、\(S_n\) は可解群ではない。[証明終]


\(S_5\)(位数 \(120\)) や、その部分群 \(A_5\)(位数 \(60\))は可解群ではありません。しかし、「\(S_5\) のすべての部分群が可解群ではない」というわけではありません。\(S_5\) の部分群では、\(F_{20}\)(位数 \(20\))、\(D_{10}\)(位数 \(10\))、\(C_5\)(位数 \(5\))が可解群であることが知られています。これについては第7章で述べます。

一般5次方程式
5次方程式には代数的に解けるものと解けないものがあります。従って、全ての5次方程式に適用可能な根の公式はありません。5次方程式に根の公式がないことはガロア以前に証明されていたのですが、なぜ根の公式がないのか、その理由を明らかにしたのがガロア理論です。

係数が変数の方程式を「一般方程式」と言います。根の公式があるということは一般方程式が解けることを意味します。以下は、一般5次方程式が代数的に解けないことの証明ですが、この証明では係数が変数ではなく、解を変数としています。


5次方程式の解の公式はない:65H)

\(\bs{Q}\) の代数拡大体を \(\bs{K}\) とする。\(\bs{K}\) の任意の元である5つの変数 \(b_1,b_2,b_3,b_4,b_5\) を根とする多項式を、
\(\begin{eqnarray}
&&\:\:f(x)&=(x-b_1)(x-b_2)(x-b_3)(x-b_4)(x-b_5)\:\:(b_i\in\bs{K})\\
&&&=x^5-a_4x^4+a_3x^3-a_2x^2+a_1x-a_0\\
\end{eqnarray}\)
とし、\(\bs{Q}\) に \(a_0,a_1,a_2,a_3,a_4,\)を添加した代数拡大体を \(\bs{F}\) とする。つまり、
 \(\bs{F}=\bs{Q}(a_0,\:a_1,\:a_2,\:a_3,\:a_4)\)
である。

このとき、\(\bs{K}\) の \(\bs{F}\) 上の ガロア群 \(G\) は5次対称群 \(S_5\) である。\(S_5\) は可解群ではないので(65G)、従って \(b_i\) を \(a_i\) のべき根で表すことはできない。


[証明]

代数拡大体 \(\bs{F}\) の作り方から、\(\bs{K}\) は \(\bs{F}\) 上の多項式 \(f(x)\) の最小分解体である。従って \(\bs{K}/\bs{F}\) はガロア拡大である。\(G=\mr{Gal}(\bs{K}/\bs{F})\) とおくと、\(G\) は \(\bs{F}\) の元を固定する自己同型写像が作る群である。

対称群 \(S_5\) の元の一つを \(s\) とし、
 \(s=\left(\begin{array}{c}1&2&3&4&5\\s(1)&s(2)&s(3)&s(4)&s(5)\end{array}\right)\)
とする。このとき、
 \(\sg(b_i)=b_{s(i)}\:\:(i=1,2,3,4,5)\)
で、\(b_i\) に作用する写像 \(\sg\) を定義する。そうすると \(\sg\) は \(f(x)=0\) の解 \(b_i\) を共役な解に移す写像だから、自己同型写像である。また、
\(\begin{eqnarray}
&&\:\:f(x)&=(x-b_1)(x-b_2)(x-b_3)(x-b_4)(x-b_5)\:\:(b_i\in\bs{K})\\
&&&=x^5-a_4x^4+a_3x^3-a_2x^2+a_1x-a_0\\
\end{eqnarray}\)
の根と係数の関係から、
 \(a_4\)\(\overset{\text{ }}{=}\)\(b_1+b_2+b_3+b_4+b_5\)
\(a_3\)\(\overset{\text{ }}{=}\)\(b_1b_2+b_1b_3+b_1b_4+b_1b_5+b_2b_3+b_2b_4+b_2b_5+b_3b_4+b_3b_5+b_4b_5\)
\(a_2\)\(\overset{\text{ }}{=}\)\(b_1b_2b_3+\)\(b_1b_2b_4+\)\(b_1b_2b_5+\)\(b_1b_3b_4+\)\(b_1b_3b_5+\)\(b_1b_4b_5+\)\(b_2b_3b_4+\)\(b_2b_3b_5+\)\(b_2b_4b_5+\)\(b_3b_4b_5\)
\(a_1\)\(\overset{\text{ }}{=}\)\(b_1b_2b_3b_4+b_1b_2b_3b_5+b_1b_2b_4b_5+b_1b_3b_4b_5+b_2b_3b_4b_5\)
\(a_0\)\(\overset{\text{ }}{=}\)\(b_1b_2b_3b_4b_5\)
である。つまり \(a_i\:(0\leq i\leq4)\) は \(b_i\:(1\leq i\leq5)\) の対称式で表される。

従って、\(\sg(a_0)=a_0\)、\(\sg(a_1)=a_1\)、\(\sg(a_2)=a_2\)、\(\sg(a_3)=a_3\)、\(\sg(a_4)=a_4\) である。つまり \(\sg\) は \(\bs{F}=\bs{Q}(a_0,\:a_1,\:a_2,\:a_3,\:a_4)\) の元を固定する。従って \(\sg\) は \(\bs{F}\) の元を固定する \(\bs{K}\) の自己同型写像であり、\(G\) の元である。以上のことは \(S_5\) の任意の元 \(s\) について言えるから \(S_5\subset G\) である。

これを踏まえて \(\bs{F}\) 上の \(\bs{K}\) の拡大次数 \([\:\bs{K}\::\:\bs{F}\:]\) を考えると、\([\:\bs{K}\::\:\bs{F}\:]\) は \(\mr{Gal}(\bs{K}/\bs{F})\) の位数に等しいから、
 \([\:\bs{K}\::\:\bs{F}\:]=|G|\geq|S_5|=5!=120\)
である。

次に、
 \(\bs{F}\subset\)\( \bs{F}(b_1)\subset\)\( \bs{F}(b_1,b_2)\subset\)\( \cd\subset\)\( \bs{F}(b_1,b_2,b_3,b_4,b_5)=\bs{K}\)
という体の拡大列を考える。最初の拡大 \(\bs{F}\subset\bs{F}(b_1)\) をみると、\(b_1\) は \(\bs{F}\) 上の 5次方程式 \(f(x)=0\) の根だから、
 \([\:\bs{F}(b_1)\::\:\bs{F}\:]\leq\mr{deg}\:f(x)\:=5\)
である。等号は \(f(x)\) が既約多項式のときである。さらに、\(b_2\) は
4次方程式 \(f(x)/(x-b_1)\) の根だから、
 \([\:\bs{F}(b_1,b_2)\::\:\bs{F}(b_1)\:]\leq4\)
である。以上を順に続けると、体の拡大次数の連鎖律33H)により、
 \([\:\bs{K}\::\:\bs{F}\:]\)
  \(=\)\([\:\bs{F}(b_1,b_2,b_3,b_4,b_5)\::\:\bs{F}\:]\)
\(=\)\([\:\bs{F}(b_1,b_2,b_3,b_4,b_5)\::\:\bs{F}(b_1,b_2,b_3,b_4)\:]\cdot\)
 \([\:\bs{F}(b_1,b_2,b_3,b_4)\::\:\bs{F}(b_1,b_2,b_3)\:]\cdot\)
 \([\:\bs{F}(b_1,b_2,b_3)\::\:\bs{F}(b_1,b_2)\:]\cdot\)
 \([\:\bs{F}(b_1,b_2)\::\:\bs{F}(b_1)\:]\cdot\)
 \([\:\bs{F}(b_1)\::\:\bs{F}\:]\)
\(\leq\)\(5\cdot4\cdot3\cdot2\cdot1=5!=120\)

である。従って、\([\:\bs{K}\::\:\bs{F}\:]\geq5!\) と合わせると \([\:\bs{K}\::\:\bs{F}\:]=5!\) であり、
 \(|G|=|S_5|\)
となって、
 \(G\cong S_5\)
である。つまり、一般5次方程式のガロア群は \(S_5\) と同型であることが証明できた。\(S_5\) は可解群ではないので(65G)、それと同型である \(G\) も可解群ではない。従って \(b_i\) を \(a_i\) のべき根で表すことはできず、一般5次方程式に解の公式はない。[証明終]


6.6 可解ではない5次方程式


5次方程式の全てに適用できる解の公式がないことは、ガロア以前に証明されていました(アーベル・ルフィニの定理)。しかしガロア理論によって、解の公式がないことの「原理」が明確になりました。つまり係数が変数である一般5次方程式は、解が四則演算とべき根で表現できる(=可解である)ための必要条件を満たさないから公式は作れないのです(65H)。

ということは、この「原理」を用いて、可解ではない、係数が数値の方程式を具体的に構成できることになります。それを以下で行います。そのためにまず、コーシーの定理を証明します。なお、コーシー(19世紀フランスの数学者)の名がついた定理はいくつかありますが、これは「群論のコーシーの定理」です。

コーシーの定理
コーシーの定理:66A)

群 \(G\) の位数 \(|G|\) が素数 \(p\) を約数にもつとき、\(g^p=e\:\:(g\neq e)\) となる \(G\) の元 \(g\) が存在する。つまり、\(G\) は位数 \(p\) の巡回群を部分群としてもつ。


[証明]

本論に入る前に、証明に使う定義を行う。\(X\) を、元の数が \(N\) の集合とし、そこから重複を許して \(n\)個の元を取り出して1列に並べた順列を考える。このような順列の集合を \(P\) とする。つまり、
 \(P=\{\:(x_1,x_2,\cd,x_n)\:|\:x_i\in X\:\}\)
である。\((x_1,x_2,\cd,x_n)\) は並べる順序に意味がある、いわゆる重複順列で、集合 \(P\) の元の数は、
 \(|P|=N^n\)
である。

\(P\) から自分自身 \(P\) への写像 \(\sg\) を、
 \(\sg\::\:(x_1,x_2,\cd,x_n)\longmapsto(x_n,x_1,x_2,\cd,x_{n-1})\)
と定義する。最後尾の元を先頭に持ってくる "循環写像" である(ここだけの用語)。そうすると、集合 \(P\) の任意の元、\(\bs{a}\) について、
 \(\sg^n(\bs{a})=\bs{a}\)
となり、\(\sg^n=e\) (\(e\::\) 恒等写像)である。

次に、集合 \(P\) のある元を \(\bs{a}\) としたとき、
 \(\sg^d(\bs{a})=\bs{a}\)
となる最小の \(d\:\:(1\leq d\leq n)\) を、"\(\bs{a}\) の循環位数" と定義する(ここだけの用語)。そうすると、循環位数 \(\bs{d}\)\(\bs{n}\) の約数になる。なぜなら、もし
 \(n=kd+r\:\:(1\leq r < d)\)
だとすると、
\(\begin{eqnarray}
&&\:\:\sg^n(\bs{a})&=\sg^{kd+r}(\bs{a})\\
&&&=\sg^r((\sg^d)^k(\bs{a}))\\
&&&=\sg^r(\bs{a})\\
&&\:\:\sg^r(\bs{a})&=\bs{a}\\
\end{eqnarray}\)
となって、\(d\) が \(\sg^d(\bs{a})=\bs{a}\) となる最小の数ではなくなるからである。

循環位数の例をあげると、
\(\begin{eqnarray}
&&\:\:N&=6\\
&&\:\:X&=\{\:1,\:2,\:3,\:4,\:5,\:6\:\}\\
&&\:\:n&=6\\
\end{eqnarray}\)
の場合、
 \(\bs{a}=(1,\:2,\:3,\:4,\:5,\:6)\:\:\rightarrow\:\:d=6\)
 \(\bs{a}=(1,\:2,\:2,\:2,\:2,\:2)\:\:\rightarrow\:\:d=6\)
 \(\bs{a}=(1,\:2,\:3,\:1,\:2,\:3)\:\:\rightarrow\:\:d=3\)
 \(\bs{a}=(1,\:2,\:1,\:2,\:1,\:2)\:\:\rightarrow\:\:d=2\)
 \(\bs{a}=(1,\:1,\:1,\:1,\:1,\:1)\:\:\rightarrow\:\:d=1\)
などである。以上を踏まえて本論に入る。


積が単位元になるような \(G\) の \(p\)個(\(p\):素数)の元の組の集合、
 \(S\:=\:\{\:(x_1,x_2,\cd,x_p)\:\:|\:\:x_i\in G,\:x_1x_2\cd x_p=e\:\}\)
を考える。まず、\(S\) の元の数 \(|S|\) を求める。\(S\) の始めから \(p-1\) 個までの \(x_i\:(1\leq i\leq p-1)\) は、全く任意に選ぶことができる。なぜなら、そうしておいて
 \(x_p=(x_1x_2\cd x_{p-1})^{-1}\)
とすれば、
 \(x_1x_2\cd x_{p-1}x_p\)
  \(=x_1x_2\cd x_{p-1}(x_1x_2\cd x_{p-1})^{-1}\)
  \(=e\)
となり、\(S\) の元になるからである。\(x_i\:(1\leq i\leq p-1)\) の選び方はそのすべてについて \(|G|\) 通りあるから、
 \(|S|=|G|^{p-1}\)
である。

次に、\(S\) の任意の元を \(\bs{a}\) とすると、\(\sg(\bs{a})\) もまた \(S\) の元になる。なぜなら、
 \(\bs{a}=(x_1,x_2,\cd,x_p)\:\:\:(x_i\in G)\)
とおくと、
 \(x_1x_2\cd x_{p-1}x_p=e\)
だが、この式に左から \(x_p\) をかけ、右から \(x_p^{-1}\) をかけると、
 \(x_px_1x_2\cd x_{p-1}x_px_p^{-1}=x_pex_p^{-1}\)
 \(x_px_1x_2\cd x_{p-1}=e\)
となり、これは \(\sg(\bs{a})\in S\) を意味しているからである。

\(S\) のすべての元に循環位数を割り振ると、\(\bs{p}\) が素数なので、循環位数は \(\bs{1}\)\(\bs{p}\) のどちらかである。循環位数が \(1\) である \(S\) の元とは、
 \((\overbrace{x,\:x,\:\cd\:,\:x}^{p\:個})\:\:(x\in G)\)
のように、\(G\) の同じ元を \(p\) 個並べたものである。また、循環位数が \(p\) の元とは、\(p\)個の \(G\) の元に1つでも違うものがあるような \(S\) の元である。

そこで、循環位数 \(p\) の \(S\) の元に着目する。その一つを \(\bs{a}_1\) とすると、
 \(S_1=\{\bs{a}_1,\:\sg(\bs{a}_1),\:\sg^2(\bs{a}_1),\:\cd\:,\sg^{p-1}(\bs{a}_1)\}\)
は、すべて相異なる \(p\) 個 の \(S\) の元である。さらに、\(S_1\) に含まれない循環位数 \(p\) の元を \(\bs{a}_2\) とすると、
 \(S_2=\{\bs{a}_2,\:\sg(\bs{a}_2),\:\sg^2(\bs{a}_2),\:\cd\:,\sg^{p-1}(\bs{a}_2)\}\)
も、すべて相異なる \(p\) 個 の \(S\) の元であり、しかも \(S_1\) とは重複しない。この操作は順々に繰り返せるから、いずれ循環位数 \(p\) の元は \(S_1,\:S_2,\:\cd\) でカバーできることとなる。循環位数 \(p\) の \(S\) の元の全部が、
 \(S_1\:\cup\:S_2\:\cup\:\cd\:\cup\:S_q\)
と表現できたとしたら、その元の数は \(pq\) である。

循環位数 \(1\) の \(S\) の元の数は、\(S\) の元の数から循環位数 \(p\) の元の数を引いたものである。
 \(|S|=|G|^{p-1}\)
だったから、\(p\) が \(|G|\) の約数である、つまり \(|G|\) が \(p\) の倍数であることに注意すると、
 循環位数 \(1\) の元の数
  \(=|G|^{p-1}-pq\equiv0\:\:(\mr{mod}\:p)\)
となる。この、循環位数 \(1\) の元の数は \(0\) ではない。なぜなら、
 \((\overbrace{e,\:e,\:\cd\:,\:e}^{p\:個})\)
は 循環位数が \(1\) の元だからである。つまり、循環位数 \(1\) の元の数は \(p\) 以上の \(p\) の倍数である。従って、\(S\) には \((e,\:e,\:\cd\:,\:e)\) 以外に、
 \((\overbrace{g,\:g,\:\cd\:,\:g}^{p\:個})\:\:\:\:(g\neq e,\:g\in G)\)
が必ず存在する。従って、
 \(g^p=e\:\:(g\neq e)\)
である \(g\) が存在する。この式が成立するということは、\(g\) の位数は \(p\) の約数であるが、\(p\) が素数なので、\(g\) の位数は \(p\) である。従って、
 \(\{\:g,\:g^2,\:\cd\:,g^{p-1},\:g^p=e\:\}\)
は位数 \(p\) の巡回群である。[証明終]

実数解3つの5次方程式は可解ではない
実数解が3つの5次方程式:66B)

\(f(x)\) を既約な5次多項式とする。方程式 \(f(x)=0\) が複素数解を2つ、実数解を3つもつなら、方程式は可解ではない。


[証明]

\(f(x)=0\) の複素数解を \(\al_1,\:\al_2\)、実数解を \(\al_3,\:\al_4,\:\al_5\) とする。また、それらを \(\bs{Q}\) に付加した体を \(\bs{L}=\bs{Q}(\al_1,\al_2,\al_3,\al_4,\al_5)\) とする。また、ガロア群 \(\mr{Gal}(\bs{L}/\bs{Q})\) を \(G\) と書く。

一般に、複素数 \(z=r+is\) が有理数係数の方程式の解なら、\(\ol{\,z\,}=r-is\) も解である。つまり \(z\) と \(\ol{\,z\,}\) は共役(同じ方程式の解同士)である(=共役複素数)。その理由は以下である。

まず、\(z_1\) と \(z_2\) を2つの複素数とすると、
 \(\ol{z_1+z_2}=\ol{z_1}+\ol{z_2}\)
が成り立つ。また、
 \(z_1=r+is\)
 \(z_2=u+iv\)
とすると、
\(\begin{eqnarray}
&&\:\:z_1z_2&=ru-sv+i(su+rv)\\
&&\:\:\ol{z_1}\cdot\ol{z_2}&=(r-is)(u-iv)\\
&&&=ru-sv-i(su+rv)\\
\end{eqnarray}\)
なので、
 \(\ol{z_1z_2}=\ol{z_1}\cdot\ol{z_2}\)
である。有理数係数の方程式を、3次方程式の例で、
 \(x^3+ax^2+bx+c=0\)
とし、\(z\) をこの方程式の解だとすると、
 \(z^3+az^2+bz+c=0\)
 \(\ol{z^3+az^2+bz+c}=\ol{\,0\,}\)
 \(\ol{z^3}+\ol{az^2}+\ol{bz}+\ol{\,c\,}=0\)
 \(\ol{\,z\,}^3+\ol{\,a\,}\ol{\,z\,}^2+\ol{\,b\,}\ol{\,z\,}+c=0\)
 \(\ol{\,z\,}^3+a\ol{\,z\,}^2+b\ol{\,z\,}+c=0\)
となって、\(\ol{\,z\,}\) も方程式の解である。もちろんこれは \(n\)次方程式でも成り立つ。

そこで、\(f(x)=0\) の複素数解 \(\al_1,\:\al_2\) を、
 \(\al_1=a+ib\)
 \(\al_2=a-ib\)
とする。ここで、複素数 \(r+is\) に作用する \(\bs{L}\) の写像を \(\tau\) を、
 \(\tau(r+is)=r-is\)
と定める。そうすると、
 \(\tau(\al_1)=\al_2,\:\tau(\al_2)=\al_1,\)
 \(\tau(\al_3)=\al_3,\:\tau(\al_4)=\al_4,\:\tau(\al_5)=\al_5\)
となり(\(\al_3,\:\al_4,\:\al_5\) は実数なので \(\tau\) で不変)、\(\tau\) は \(f(x)=0\) の2つの解を入れ替えるから \(\bs{L}\) の自己同型写像になり(51E)、すなわち \(G\) の元である。\(\al_1\) を \(1\)、\(\al_2\) を \(2\) と書き、巡回置換の記法を使うと、
 \(\tau=(1,\:2)\)
である。

一方、\(f(x)\) は既約多項式なので単拡大体の基底の定理(33F)により、\(\bs{Q}(\al_1)\) の次元は \(5\)、つまり \([\bs{Q}(\al_1)\::\:\bs{Q}]=5\) である。そうすると、拡大次数の連鎖律33H)により、
 \([\:\bs{L}\::\:\bs{Q}\:]=[\:\bs{L}\::\:\bs{Q}(\al_1)\:][\bs{Q}(\al_1)\::\:\bs{Q}]\)
が成り立つので、\([\:\bs{L}\::\:\bs{Q}\:]\) は \(5\) の倍数である。\(|G|=[\:\bs{L}\::\:\bs{Q}\:]\) なので(52B)、ガロア群 \(G\) の位数は \(5\) を約数にもつ。

そうするとコーシーの定理66A)より、\(G\) の部分群には位数 \(5\) の巡回群がある。それを、
 \(H=\{\:\sg,\:\sg^2,\:\sg^3,\:\sg^4,\:\sg^5=e\:\}\)
とする。5つの解の置換の中で、位数 \(5\) の巡回群を生成する \(\sg\) は、巡回置換の記法で書くと、
 \(\sg_1=(1,\:2\:,3,\:4,\:5)\)
 \(\sg_2=(1,\:3\:,5,\:2,\:4)\)
 \(\sg_3=(1,\:4\:,2,\:5,\:3)\)
 \(\sg_4=(1,\:5\:,4,\:3,\:2)\)
の4つである。これらには、
 \(\sg_1^{\:2}=\sg_2\)
 \(\sg_1^{\:3}=\sg_3\)
 \(\sg_1^{\:4}=\sg_4\)
の関係がある。そこで、\(G\) の中にある位数 \(5\) の巡回群は、
 \(\sg=(1,\:2\:,3,\:4,\:5)\)
だとして一般性を失わない。そうすると、\(G\) の中には、
 \(\tau=(1,\:2)\)
 \(\sg=(1,\:2\:,3,\:4,\:5)\)
の2つの元があることになる。実は、

\(\tau,\:\sg\) から出発して、この2つの元とその逆元の演算を繰り返すことによって、5次対称群 \(\bs{S_5}\) の元が全部作り出せる

のである。それを証明する。

\(G\) は群なので \(\sg^{-1}\) も \(G\) に含まれる(\(\sg\) は位数 \(5\) の巡回群の元なので \(\sg^{-1}=\sg^4\))。まず、\(\sg\tau\sg^{-1}\) を計算してみると、
 \(\sg\tau\sg^{-1}=(1,2,3,4,5)(1,2)(5,4,3,2,1)\)
 \((5,4,3,2,1)\)\(=\left(\begin{array}{c}1&2&3&4&5\\5&1&2&3&4\end{array}\right)\)
 \((1\:2)\)\(=\left(\begin{array}{c}5&1&2&3&4\\5&2&1&3&4\end{array}\right)\)
 \((1,2,3,4,5)\)\(=\left(\begin{array}{c}5&2&1&3&4\\1&3&2&4&5\end{array}\right)\)
なので、
\(\begin{eqnarray}
&&\:\:\sg\tau\sg^{-1}&=\left(\begin{array}{c}1&2&3&4&5\\1&3&2&4&5\end{array}\right)\\
&&&=(2,\:3)\\
\end{eqnarray}\)
となる。同様にして、
 \((5,4,3,2,1)\)\(=\left(\begin{array}{c}1&2&3&4&5\\5&1&2&3&4\end{array}\right)\)
 \((2,\:3)\)\(=\left(\begin{array}{c}5&1&2&3&4\\5&1&3&2&4\end{array}\right)\)
 \((1,2,3,4,5)\)\(=\left(\begin{array}{c}5&1&3&2&4\\1&2&4&3&5\end{array}\right)\)
なので、
\(\begin{eqnarray}
&&\:\:\sg^2\tau\sg^{-2}&=\sg(\sg\tau\sg^{-1})\sg^{-1}\\
&&&=\sg\cdot(2,3)\cdot\sg^{-1}\\
&&&=\left(\begin{array}{c}1&2&3&4&5\\1&2&4&3&5\end{array}\right)\\
&&&=(3,\:4)\\
\end{eqnarray}\)
である。以下、
 \((5,4,3,2,1)\)\(=\left(\begin{array}{c}1&2&3&4&5\\5&1&2&3&4\end{array}\right)\)
 \((3,\:4)\)\(=\left(\begin{array}{c}5&1&2&3&4\\5&1&2&4&3\end{array}\right)\)
 \((1,2,3,4,5)\)\(=\left(\begin{array}{c}5&1&2&4&3\\1&2&3&5&4\end{array}\right)\)
 \(\rightarrow\:\sg^3\tau\sg^{-3}\)\(=\left(\begin{array}{c}1&2&3&4&5\\1&2&3&5&4\end{array}\right)\)
\(=(4,\:5)\)

 \((5,4,3,2,1)\)\(=\left(\begin{array}{c}1&2&3&4&5\\5&1&2&3&4\end{array}\right)\)
 \((4,\:5)\)\(=\left(\begin{array}{c}5&1&2&3&4\\4&1&2&3&5\end{array}\right)\)
 \((1,2,3,4,5)\)\(=\left(\begin{array}{c}4&1&2&3&5\\5&2&3&4&1\end{array}\right)\)
 \(\rightarrow\:\sg^4\tau\sg^{-4}\)\(=\left(\begin{array}{c}1&2&3&4&5\\5&2&3&4&1\end{array}\right)\)
\(=(1,\:5)\)
となる。つまり、
 \((1,\:2)\)、\((2,\:3)\)、\((3,\:4)\)、\((1,\:5)\)
は \(G\) の元である。

一般に、
 \((i,\:j)=(1,\:i)(1,\:j)(1,\:i)\)
である。なぜなら、
\(\begin{eqnarray}
&&\:\:(1,\:i)(1,\:j)(1,\:i)\cdot1&=(1,\:i)(1,\:j)\cdot i\\
&&&=(1,\:i)\cdot i=1\\
&&\:\:(1,\:i)(1,\:j)(1,\:i)\cdot i&=(1,\:i)(1,\:j)\cdot1\\
&&&=(1,\:i)\cdot j=j\\
&&\:\:(1,\:i)(1,\:j)(1,\:i)\cdot j&=(1,\:i)(1,\:j)\cdot j\\
&&&=(1,\:i)\cdot1=i\\
\end{eqnarray}\)
が成り立つからである。従って、
 \((2,\:3)=(1,\:2)(1,\:3)(1,\:2)\)
である。この両辺に左と右から \((1,\:2)\) をかけると、
 \((1,\:2)(2,\:3)(1,\:2)=(1,\:3)\)
となり、\((2,\:3),\:(1,\:2)\) が \(G\) の元なので \((1,\:3)\) も \(G\) の元である。同様に、
 \((3,\:4)=(1,\:3)(1,\:4)(1,\:3)\)
であるが、\((3,\:4),\:(1,\:3)\) が \(G\) の元なので、\((1,\:4)\) も \(G\) の元である。結局、
 \((1,\:2)\)、\((1,\:3)\)、\((1,\:4)\)、\((1,\:5)\)
が \(G\) の元であることが分かった。

\(S_5\) は5文字の置換をすべて集めた集合である。すべての置換は互換の積で表せて(65B)、かつ任意の互換 \((i,\:j)\) は、
 \((i,\:j)=(1,\:i)(1,\:j)(1,\:i)\)
と表せるから、5文字の置換はすべて、
 \((1,\:2)\)、\((1,\:3)\)、\((1,\:4)\)、\((1,\:5)\)
という4つの互換の積で表現できる。つまり、\(S_5\) はこの4つの互換で生成できる。以上をまとめると、

 \((1,\:2)\)、\((1,\:2\:,3,\:4,\:5)\)
  \(\Downarrow\)
 \((1,\:2)\)、\((2,\:3)\)、\((3,\:4)\)、\((1,\:5)\)
  \(\Downarrow\)
 \((1,\:2)\)、\((1,\:3)\)、\((1,\:4)\)、\((1,\:5)\)
  \(\Downarrow\)
 \(S_5\) のすべての元

という、"\(S_5\)を生成する連鎖" の存在が証明できた。従って \(G\cong S_5\) である。\(S_5\) は可解群ではない(65G)。従って、複素数解を2つ、実数解を3つもつ既約な5次方程式は可解ではない。[証明終]


この、実数解が3つの5次方程式の定理(66B)から、可解ではない5次方程式の実例を簡単に構成できます。たとえば、
 \(f(x)=x^5-5x+a\)
とおき、\(f(x)=0\) の方程式を考えます。
 \(f\,'(x)=5x^4-5\)
なので、\(f\,'(x)=0\) の実数解は \(1,\:-1\) の2つです。
 \(f(\phantom{-}1)=a-4\)
 \(f(-1)=a+4\)
なので、
 \(a-4 < 0 < a+4\)
なら、\(f(x)=0\) には3つの実数解があります。この条件は、
 \(-4 < a < 4\)
ですが、\(a=0\) のときは \(f(x)\) は既約多項式ではありません。また \(a=3,\:-3\) のときも、
 \(x^5-5x+3=(x^2+x-1)(x^3-x^2+2x-3)\)
 \(x^5-5x-3=(x^2-x-1)(x^3+x^2+2x+3)\)
と因数分解できるので、既約多項式ではありません。従って、
 \(x^5-5x+2=0\)
 \(x^5-5x+1=0\)
 \(x^5-5x-1=0\)
 \(x^5-5x-2=0\)
が可解ではない5次方程式の例(\(G\cong S_5\))であり、これらの方程式の解を四則演算とべき根で表すのは不可能です。

x^5-5x+1=0.jpg
\(\bs{y=x^5-5x+1}\) のグラフ

方程式 \(x^5-5x+1=0\) の3つの実数解を小さい方から \(\al,\beta,\gamma\) とし、数式処理ソフトそので近似解を求めると、
 \(\al\fallingdotseq-1.5416516841045247594\)
 \(\beta\fallingdotseq\phantom{-}0.2000641026299753912\)
 \(\gamma\fallingdotseq\phantom{-}1.4405003973415600893\)
である。近似解の精度を上げるのはいくらでも可能であり、方程式の形もシンプルだが、これらの解を四則演算とべき根で表すことはできない。グラフと近似解は WolframAlpha による。

「6.可解性の必要条件」終わり 
次回に続く


nice!(0) 

No.356 - 高校数学で理解するガロア理論(3) [科学]

\(\newcommand{\bs}[1]{\boldsymbol{#1}} \newcommand{\mr}[1]{\mathrm{#1}} \newcommand{\br}[1]{\textbf{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\sb}{\subset} \newcommand{\sp}{\supset} \newcommand{\al}{\alpha} \newcommand{\sg}{\sigma}\newcommand{\cd}{\cdots} \newcommand{\fz}{0^{\tiny F}} \newcommand{\kz}{0^{\tiny K}} \newcommand{\fo}{1^{\tiny F}} \newcommand{\ko}{1^{\tiny K}}\)
 
3.多項式と体(続き) 
 


3.3 線形空間


ガロア理論の一つの柱は、代数拡大体を線形空間(ベクトル空間)としてとらえることで、線形空間の「次元」や「基底」を使って理論が組み立てられています。線形空間には精緻な理論体系がありますが、ここではガロア理論に必要な事項の説明をします。

線形空間の定義
線形空間の定義:33A)

集合 \(V\) と 体 \(\bs{K}\) が次を満たすとき、\(V\) を \(\bs{\bs{K}}\) 上の線形空間(=ベクトル空間。linear space / vector space)と言う。

加算の定義

\(V\) の任意の元 \(\br{u},\:\br{v}\) に対して \((\br{u}+\br{v})\in V\) が定義されていて、この加算(\(+)\) の定義に関して \(V\) は可換群である。すなわち、

\((1)\) 単位元の存在
\(\br{u}+\br{x}=\br{x}\) となる \(\br{x}\) が存在する。これを \(0\) と書く。
\((2)\) 逆元の存在
\(\br{u}+\br{x}=0\) となる \(\br{x}\) が存在する。これを \(-\br{u}\) と書く。
\((3)\) 結合則が成り立つ
任意の元 \(\br{u},\:\br{v}\:,\br{w}\) について、\((\br{u}+\br{v})+\br{w}=\br{u}+(\br{v}+\br{w})\)
\((4)\) 交換則が成り立つ
\(\br{u}+\br{v}=\br{v}+\br{u}\)

スカラー倍の定義

\(V\) の任意の元 \(\br{u}\) と \(\bs{K}\) の任意の元 \(k\) に対して、スカラー倍 \(k\br{u}\in V\) が定義されていて、加算との間に次の性質がある。\(\br{u},\:\br{v}\) を \(V\) の元、\(k,\:m\) を \(\bs{K}\) の元とし、\(\bs{K}\) の乗法の単位元を \(1\) とする。

\((1)\:\:k(m\br{u})=(km)\br{u}\)
\((2)\:\:(k+m)\br{u}=k\br{u}+m\br{u}\)
\((3)\:\:k(\br{u}+\br{v})=k\br{u}+k\br{v}\)
\((4)\:\:1\br{v}=\br{v}\)


高校数学に出てくる "2次元ベクトル" とは、上記の定義の \(\bs{K}\) を \(\bs{R}\)(実数の体)とし、\(V\) を2つの実数のペアの集合 \(\{\:(x,y)\:|\:x,y\in\bs{R}\:\}\) とするベクトル空間(の要素)のことです。

上の定義の \(0\) は線形空間 \(V\) の元です。以下、\(V\) の単位元 \(0\)(= \(0\) ベクトル)と、体 \(\bs{K}\) の加法の単位元 \(0\) が混在しますが、文脈や式から明らかなので、同じ \(0\) で記述します。

1次独立と1次従属
1次独立と1次従属:33B)

1次独立

線形空間 \(V\) の元の組、\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) に対して、
 \(a_1\br{v}_1+a_2\br{v}_2+\)..\(+a_n\br{v}_n=0\)
を満たす \(\bs{K}\) の元 \(a_1,a_2,\cd,a_n\) が、\(a_1=a_2=\cd=a_n=0\) しかないとき、\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) は1次独立であるという。

1次従属

1次独立でないときが1次従属である。つまり、線形空間 \(V\) の元の組、\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) に対して、
 \(a_1\br{v}_1+a_2\br{v}_2+\)..\(+a_n\br{v}_n=0\)
を満たす、少なくとも一つは \(0\) でない \(\bs{K}\) の元 \(a_1,a_2,\cd,a_n\) があるとき、\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) は1次従属であるという。


基底
基底の定義:33C)

線形空間 \(V\) の元の組、\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) に対して、次の2つが満たされるとき、\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) を基底という。

・ \({\br{v}_1,\br{v}_2,\cd,\br{v}_n}\) は1次独立である。
・ \(V\) の任意の元 \(\br{v}\) は、\(\bs{K}\) の元 \(a_1,a_2,\cd,a_n\) を選んで、
\(\br{v}=a_1\br{v}_1+a_2\br{v}_2+\)..\(+a_n\br{v}_n\)
と表せる。

基底から1つの元を除外したものは基底ではなくなる。また基底に1つの元を加えたものも基底ではない。


\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) が基底だと、\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_{n-1}\}\) は基底ではありません。なぜなら、もし \(\{\br{v}_1,\br{v}_2,\cd,\br{v}_{n-1}\}\) が基底だとすると、
 \(\br{v}_n=a_1\br{v}_1+a_2\br{v}_2+\)..\(+a_{n-1}\br{v}_{n-1}\)
と表せますが、これは、
 \(a_1\br{v}_1+a_2\br{v}_2+\)..\(+a_{n-1}\br{v}_{n-1}-\br{v}_n=0\)
ということであり、\(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) が1次従属となってしまって、基底の要件を満たさなくなるからです。基底に、別の1つの元を加えるケースも同じことです。


基底の数の不変性:33D)

\(\{\br{u}_1,\br{u}_2,\cd,\br{u}_m\}\) と \(\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) がともに線形空間 \(V\) の基底であるとき、\(m=n\) である。


[証明]

この定理の証明のために、まず次の補題を証明する。

[補題]

線形空間 \(V\) の任意の \(n\) 個の元を \(\{\br{u}_1,\br{u}_2,\cd,\br{u}_n\}\) とする(基底でなくてもよい)。線形空間 \(V\) の \(n+1\) 個の元 \(\{\br{w}_1,\br{w}_2,\cd,\br{w}_n,\br{w}_{n+1}\}\) がすべて \(\{\br{u}_1,\br{u}_2,\cd,\br{u}_n\}\) の1次結合で表されるなら、\(\{\br{w}_1,\br{w}_2,\cd,\br{w}_n,\br{w}_{n+1}\}\) は1次従属である。


数学的帰納法を使う。まず、\(n=1\) のとき、この定理は成り立つ。つまり、
 \(\br{w}_1=k_1\br{u}_1\)
 \(\br{w}_2=k_2\br{u}_1\)
と表されるなら、
 \(k_2\br{w}_1-k_1\br{w}_2=0\)
であり、\(\br{w}_1\) と \(\br{w}_2\) は1次従属である。そこで、\(n\) が \(k\:\:(\geq1)\) のときに成り立つとし、\(n=k+1\) でも成り立つことを証明する。

以降、表記を見やすくするため、\(k=3\) の場合で記述する。ただし、一般性を失うことがないように記述する。\(\br{w}_1,\br{w}_2,\br{w}_3,\br{w}_4\) が、
 \(\br{w}_1=a_{11}\br{u}_1+a_{12}\br{u}_2+a_{13}\br{u}_3\)
 \(\br{w}_2=a_{21}\br{u}_1+a_{22}\br{u}_2+a_{23}\br{u}_3\)
 \(\br{w}_3=a_{31}\br{u}_1+a_{32}\br{u}_2+a_{33}\br{u}_3\)
 \(\br{w}_4=a_{41}\br{u}_1+a_{42}\br{u}_2+a_{43}\br{u}_3\)
と表せたとする。ここで \(\br{w}_4\) の係数に注目する。もし、
 \(a_{41}=a_{42}=a_{43}=0\)
であれば、\(\br{w}_1,\br{w}_2,\br{w}_3,\br{w}_4\) は1次従属である。なぜなら、
 \(b_1\br{w}_1+b_2\br{w}_2+b_3\br{w}_3+b_4\br{w}_4=0\)
の式を満たす \(b_1,b_2,b_3,b_4\) は、
 \(b_1=b_2=b_3=0\)
 \(b_4\neq0\)
として実現でき、\(\br{w}_1,\br{w}_2,\br{w}_3,\br{w}_4\) は1次従属の定義を満たすからである。そこで、\(a_{41},a_{42},a_{43}\) のうち \(0\) でないものが少なくとも一つあるとする。それを \(a_{43}\) とし、
 \(a_{43}\neq0\)
とする。この仮定で一般性を失うことはない。ここで、
 \(\br{x}_i=\br{w}_i-\dfrac{a_{i3}}{a_{43}}\br{w}_4\:\:(i=1,2,3)\)
とおいて \(\br{u}_3\) の項を消去する。計算すると、
\(\begin{eqnarray}
&&\:\:\br{x}_1=&\left(a_{11}-\dfrac{a_{13}a_{41}}{a_{43}}\right)\br{u}_1+\left(a_{12}-\dfrac{a_{13}a_{42}}{a_{43}}\right)\br{u}_2\\
&&\:\:\br{x}_2=&\left(a_{21}-\dfrac{a_{23}a_{41}}{a_{43}}\right)\br{u}_1+\left(a_{22}-\dfrac{a_{23}a_{42}}{a_{43}}\right)\br{u}_2\\
&&\:\:\br{x}_3=&\left(a_{31}-\dfrac{a_{33}a_{41}}{a_{43}}\right)\br{u}_1+\left(a_{32}-\dfrac{a_{33}a_{42}}{a_{43}}\right)\br{u}_2\\
\end{eqnarray}\)
となる。そうすると、\(\br{x}_1,\:\br{x}_2,\:\br{x}_3\) は「線形空間 \(V\) の2つの元 \(\br{u}_1,\br{u}_2\) の1次結合で表された3つの元」である。従って、帰納法の仮定により、\(\br{x}_1,\:\br{x}_2,\:\br{x}_3\) は1次従属である。1次従属だから、
 \(b_1\br{x}_1+b_2\br{x}_2+b_3\br{x}_3=0\)
 \((\br{A})\)
となる少なくとも一つは \(0\) ではない \(b_1,\:b_2,\:b_3\) がある。
 \(\br{x}_1=\br{w}_1-\dfrac{a_{13}}{a_{43}}\br{w}_4\)
 \(\br{x}_2=\br{w}_2-\dfrac{a_{23}}{a_{43}}\br{w}_4\)
 \(\br{x}_3=\br{w}_3-\dfrac{a_{33}}{a_{43}}\br{w}_4\)
だったから、これを \((\br{A})\) 式に代入すると、
 \(b_1\br{w}_1+b_2\br{w}_2+b_3\br{w}_3-\)
  \(\dfrac{1}{a_{43}}(b_1a_{13}+b_2a_{23}+b_3a_{33})\br{w}_4=0\)
となる。この式における \(\br{w}_1,\:\br{w}_2,\:\br{w}_3,\:\br{w}_4\) の係数の少なくとも一つは \(0\) ではない。従って、\(a_{41},a_{42},a_{43}\) のうち \(0\) でないものが少なくとも一つある場合にも \(\br{w}_1,\:\br{w}_2,\:\br{w}_3,\:\br{w}_4\) は1次従属である。

以上で、線形空間 \(V\) の \(k=3\) 個の元(\(\br{u}_1,\br{u}_2,\br{u}_3\))の1次結合で、\(k+1=4\) 個の元(\(\br{w}_1,\br{w}_2,\br{w}_3,\br{w}_4\))のすべてが表されば、その4個の元は1次従属であることが証明できた。\(k=3\) としたのは表記を見やすくするためであり、\(k=3\) であることの特殊性は使っていない。つまり、\(k\geq1\) のすべてで成り立つ。従って数学的帰納法により補題が正しいことが証明できた。[補題の証明終]


以上を踏まえて、\(A=\{\br{u}_1,\br{u}_2,\cd,\br{u}_m\}\) と \(B=\{\br{v}_1,\br{v}_2,\cd,\br{v}_n\}\) がともに線形空間 \(V\) の基底であるとき、\(m=n\) となることを証明する。

もし仮に \(m < n\) だとすると、\(B\) の中から \((m+1)\) 個の元を選べる。それを \(B\:'=\{\br{v}_1,\br{v}_2,\cd,\br{v}_{m+1}\}\) とすると、\(A\) は 線形空間 \(V\) の基底だから、\(B\:'\) の元は \(A\) の元の1次結合で表現できる。つまり \(B\:'\) の \((m+1)\)個の元のすべては \(m\)個の元の1次結合で表されるから、[補題]によって \(B\:'\) は1次従属である。\(B\) は \(B\:'\) と同じものか、または \(B\:'\) に数個の元を付け加えたものだから、\(B\:'\) が1次従属なら \(B\) も1次従属である。しかし、\(B\) は線形空間 \(V\) の基底だから1次独立であり、矛盾が生じる。従って、\(m\geq n\) である。

もし仮に \(m > n\) だとしても、全く同様の考察により矛盾が生じる。従って、\(m\leq n\) である。この結果、\(m=n\) であることが証明できた。[証明終]


この基底の数の不変性の定理(33D)により、線形空間には次のように「次元」が定義できることになります。

次元
次元の不変性:33E)

線形空間の基底に含まれる元の数が有限個のとき、その個数を線形空間の次元と言う。次元は基底の取り方によらない。


線形空間の次元や基底と、代数拡大体を結びつけるのが次の定理です。

単拡大体の基底
単拡大体の基底:33F)

\(\bs{Q}\) 上の \(n\)次既約多項式を \(f(x)\) とし、方程式 \(f(x)=0\) の解の一つを \(\al\) とする。単拡大体である \(\bs{Q}(\al)\) は \(\bs{Q}\) 上の \(n\)次元線形空間であり、\(\{1,\:\al,\:\al^2,\:\cd\:,\al^{n-1}\}\) は \(\bs{Q}(\al)\) の基底である。


[証明]

\(\bs{Q}(\al)\) の基底であるための条件は、

① \(\{1,\:\al,\:\al^2,\:\cd\:,\al^{n-1}\}\) が1次独立である
② \(\bs{Q}(\al)\) の任意の元が \(\{1,\:\al,\:\al^2,\:\cd\:,\al^{n-1}\}\) の1次結合で表される

の2つである。② は単拡大の体の定理(32C)で証明されているので、① を証明する。多項式 \(g(x)\) を、

 \(g(x)=a_0+a_1x+a_2x^2+\cd+a_{n-1}x^{n-1}\)

とおく。\(\{1,\:\al,\:\al^2,\:\cd\:,\al^{n-1}\}\) が1次独立であることを言うには、
 \(g(\al)=0\) であれば \(a_i\:\:(0\leq i\leq n-1)\) は全て \(0\)
を言えばよい。以降、背理法を使って証明する。\(g(\al)=0\) で、\(a_i\:\:(0\leq i\leq n-1)\) のうち、少なくとも1つはゼロでないと仮定する。

\(g(x)\) が定数(つまり \(a_0\) の項のみ)のときは、\(g(\al)=0\) なら \(a_0=0\) なので、「少なくとも1つはゼロでない」に反する。そこで \(g(x)\) は1次以上の多項式であるとする。

そうすると、2つの方程式 \(f(x)=0\) と \(g(x)=0\) は共通の解 \(\al\) をもつことになる。しかし、\(f(x)\) は \(n\)次の既約多項式であり、\(g(x)\) は1次以上で \(n\)次未満の多項式である。既約多項式の定理231F)により、このような2つの方程式は共通の解を持たない。ゆえに矛盾が生じる。従って、\(g(\al)=0\) のとき \(a_i\:\:(0\leq i\leq n-1)\) は全て \(0\) であり、① が証明された。

基底の数が線形空間の次元であり、\(\bs{Q}(\al)\) は \(\bs{Q}\) 上の \(n\)次元線形空間である。[証明終]


もし、\(f(x)\) が\(n\)次多項式だとしたら(既約多項式を含む)、\(\bs{Q}(\al)\) の次元は \(n\)以下になります。\(f(x)=0\) の解の一つ、\(\al\) の最小多項式(31H)を \(m\)次多項式である \(g(x)\) とすると、\(g(x)\) は既約多項式であり(31I)、\(\al\) は \(f(x)=0\) と \(g(x)=0\) の共通の解なので、既約多項式の定理131E)により \(f(x)\) は \(g(x)\) で割り切れます。つまり、
 \(f(x)=h(x)g(x)\)
と書けるので、
 \(\mr{deg}\:f(x)\:\geq\:\mr{deg}\:g(x)\)
 \(n\:\geq\:m\)
ですが、単拡大体の基底の定理(33F)により \(\bs{Q}(\al)\) の次元は \(m\) なので、\(n\)以下です。

拡大次数とその連鎖律
方程式の解になる数が代数的数で、\(\bs{Q}\) に代数的数を添加した体が代数拡大体です。「3.2 体」の「単拡大の体」でとりあげた \(\bs{Q}(\al)\) は代数拡大体であり、次元は \(n\) でした(32C)。この次元を「体の拡大」の視点で考えてみます。

「体 \(\bs{K}\) 上の線形空間 \(V\)」の定義において、\(\bs{K}=\bs{Q}\) とし \(V=\bs{Q}\) とすると、「有理数体 \(\bs{Q}\) は、\(\bs{Q}\) 上の線形空間」であると言えます。\(\bs{Q}\) では加算もスカラー倍(=乗算)も定義されていて、可換だからです。線形空間の定義にある各種の演算は、体の演算の一部です。

線形空間 \(\bs{Q}\) の基底は、\(0\) ではない \(\bs{Q}\) の元 \(v\) です。\(0\) を含む \(\bs{Q}\) の任意の元を \(a\) とすると、
 \(av=0\:\:\:(v\neq0)\)
が成り立つのは \(a=0\) しかないので \(v\) は1次独立であり、また \(av\) で全ての \(\bs{Q}\) の元が表されるからです。一方、\(0\) は、
 \(a\cdot0=0\)
が \(0\) ではない \(a\) について成り立つので1次従属です。以上から、線形空間 \(\bs{Q}\) の基底として \(1\) を選ぶことにします。次元は \(1\) です。

\(\bs{Q}\) に \(\sqrt{2}\) を添加した \(\bs{Q}(\sqrt{2})\) は \(\bs{Q}\) の代数拡大体で、\(\bs{Q}\:\subset\:\bs{Q}(\sqrt{2})\) です。\(\bs{Q}(\sqrt{2})\) は \(\bs{\bs{Q}}\) 上の線形空間です。\(\bs{Q}(\sqrt{2})\) の基底としては、まず \(1\) を選ぶことができます。\(1\) を \(\bs{Q}\) の元でスカラー倍すると、\(\bs{Q}(\sqrt{2})\) の部分集合である \(\bs{Q}\) の元の全てが表せます。

\(\bs{Q}(\sqrt{2})\) の元の全てを表現するためには、さらに基底に \(\sqrt{2}\) を追加します。\(\sqrt{2}\) は \(\bs{Q}\) の元の1次結合では表せないので、\(1\) と \(\sqrt{2}\) は 1次独立です。\(1,\:\sqrt{2}\) が \(\bs{Q}(\sqrt{2})\) の基底で、次元は \(2\) です。

さらに \(\bs{Q}(\sqrt{2})\) に \(\sqrt{3}\) を添加した代数拡大体 \(\bs{Q}(\sqrt{2},\sqrt{3})\) を考えてみると、\(\bs{Q}(\sqrt{2},\sqrt{3})\) は \(\bs{\bs{Q}(\sqrt{2})}\) 上の線形空間であり、基底は \(1,\:\sqrt{3}\) です。\(1\) と \(\sqrt{3}\) は 1次独立であり、\(\bs{\bs{Q}(\sqrt{2},\sqrt{3})}\) の全ての元は、\(\bs{\bs{Q}(\sqrt{2})}\) の元を係数とする \(\bs{1}\)\(\bs{\sqrt{3}}\) の1次結合で表現できるからです。\(\bs{\bs{Q}(\sqrt{2})}\) 上の線形空間 \(\bs{\bs{Q}(\sqrt{2},\sqrt{3})}\) の次元は \(\bs{2}\) です。

ここで \(\bs{Q}(\sqrt{2},\sqrt{3})\) を \(\bs{\bs{Q}}\) 上の線形空間と考えると、その基底はまず、\(1,\:\sqrt{2},\:\sqrt{3}\) ですが、これだけでは不足で、\(\sqrt{6}\) を加える必要があります。\(\sqrt{6}\) は体としての演算(乗算)でできる数ですが、\(1,\:\sqrt{2},\:\sqrt{3}\) の1次結合では表現できないからです。\(\bs{Q}\) 上の線形空間 \(\bs{Q}(\sqrt{2},\sqrt{3})\) の基底は \(1,\:\sqrt{2},\:\sqrt{3},\:\sqrt{6}\) であり、次元は \(4\) です。

ここまでの基底の表現はあくまで一例ですが、どういう基底を選ぼうと基底の数=次元は不変量であるというのが「次元の不変性」でした。以上の考察を踏まえて、拡大次数を定義し、拡大次数の連鎖律を証明します。


拡大次数の定義:33G)

代数拡大体 \(\bs{F},\:\bs{K}\) が \(\bs{F}\:\subset\:\bs{K}\) であるとき、\(\bs{K}\) は \(\bs{F}\) 上の線形空間である。\(\bs{K}\) の次元を、\(\bs{K}\)の(\(\bs{F}\)からの)拡大次数といい、
 \([\:\bs{K}\::\:\bs{F}\:]\)
で表す。



拡大次数の連鎖律:33H)

代数拡大体 \(\bs{F},\:\bs{M},\:\bs{K}\) が \(\bs{F}\:\subset\:\bs{M}\:\subset\:\bs{K}\) であるとき、
 \([\:\bs{K}\::\:\bs{F}\:]=[\:\bs{K}\::\:\bs{M}\:][\:\bs{M}\::\:\bs{F}\:]\)
が成り立つ。


[証明]

\([\:\bs{M}\::\:\bs{F}\:]=m\)、\([\:\bs{K}\::\:\bs{M}\:]=n\) とする。以下、表記を見やすくするため、\(m=3,\:n=2\) の場合で記述する。もちろん一般性を失わないように記述する。

\(\bs{F}\) 上の線形空間 \(\bs{M}\) の基底を
 \(u_1,\:u_2,\:u_3\)
とすると、\(\bs{M}\) の任意の元 \(b\) は、
 \(b=a_1u_1+a_2u_2+a_3u_3\:\:(a_i\in\bs{F},\:u_i\in\bs{M},\:1\leq i\leq m)\)
と表せる。

\(\bs{M}\) 上の線形空間 \(\bs{K}\) の基底を
 \(v_1,\:v_2\)
とすると、\(\bs{K}\) の任意の元 \(x\) は、
 \(x=b_1v_1+b_2v_2\:\:(b_j\in\bs{M},\:v_j\in\bs{K},\:1\leq j\leq n)\)
と表せる。\(b_1,\:b_2\) を \(\bs{M}\) の基底 \(u_1,u_2,u_3\) で表すと、
 \(b_1=a_{11}u_1+a_{21}u_2+a_{31}u_3\)
 \(b_2=a_{12}u_1+a_{22}u_2+a_{32}u_3\)
  \((\:a_{ij}\in\bs{F}\:)\)
となるが、これを用いて \(x\) を表すと、
\(\begin{eqnarray}
&&\:\:x=&a_{11}u_1v_1+a_{21}u_2v_1+a_{31}u_3v_1+\\
&&&a_{12}u_1v_2+a_{22}u_2v_2+a_{32}u_3v_2\\
\end{eqnarray}\)
となる。つまり、\(\bs{K}\) の任意の元は \(\bs{F}\) の元を係数とする、\(u_1v_1\)、\(u_2v_1\)、\(u_3v_1\)、\(u_1v_2\)、\(u_2v_2\)、\(u_3v_2\) の1次結合で表現できる。

ここで \(x=0\) とすると、
 \((a_{11}u_1+a_{21}u_2+a_{31}u_3)v_1+\)
 \((a_{12}u_1+a_{22}u_2+a_{32}u_3)v_2=0\)
であるが、\(v_1,v_2\) は \(\bs{K}\) の基底なので1次独立であり、従って、
 \(a_{11}u_1+a_{21}u_2+a_{31}u_3=0\)
 \(a_{12}u_1+a_{22}u_2+a_{32}u_3=0\)
である。すると、\(u_1,u_2,u_3\) は \(\bs{M}\) の基底なので1次独立であり、
 \(a_{11}=a_{21}=a_{31}=a_{12}=a_{22}=a_{32}=0\)
である。従って、\(u_iv_j\:\:(1\leq i\leq m,\:1\leq j\leq n)\) は1次独立である。

\(u_iv_j\:\:(1\leq i\leq m,\:1\leq j\leq n)\) の \(mn\) 個の元は、
① 1次独立
②  \(\bs{F}\) の元を係数とする1次結合で \(\bs{K}\) の元のすべてを表せる
から、\(\bs{F}\) 上の線形空間 \(\bs{K}\) の基底であり、\(\bs{K}\) の次元は \(mn\) である。以上により、
 \([\:\bs{K}\::\:\bs{F}\:]=[\:\bs{K}\::\:\bs{M}\:][\:\bs{M}\::\:\bs{F}\:]\)
である。[証明終]

体の一致
2つの代数拡大体 \(\bs{F}\) と \(\bs{K}\) の次元が一致するとします。たとえば \(\bs{Q}(\sqrt{2})\) と \(\bs{Q}(\sqrt{3})\) の次元はいずれも \(2\) です。もちろん \(\bs{Q}(\sqrt{2})\) と \(\bs{Q}(\sqrt{3})\) は体として別物です。

それでは、\(\bs{F}\subset\bs{K}\) という関係があり、かつ \(\bs{F}\) と \(\bs{K}\) の次元が一致するとき、\(\bs{F}\) と \(\bs{K}\) は体として一致すると言えるのでしょうか。

これはイエスで、それを次に証明します。この定理は、ガロア理論の証明の過程において、2つの体が実は同じものであることを言うときに使われる論法です。証明の都合上、\(\bs{F}\) ではなく \(\bs{K}_0\) と書きます。


体の一致:33I)

体 \(\bs{K}_0\) と 体 \(\bs{K}\) があり、\(\bs{K}_0\:\subset\:\bs{K}\) を満たしている。\(\bs{K}_0\) と \(\bs{K}\) が有限次元であり、その次元が同じであれば、\(\bs{K}_0=\bs{K}\) である。


[証明]

体 \(\bs{K}_0\) と \(\bs{K}\) を、\(\bs{Q}\) 上の線形空間と見なし、その次元を \(n\) とする。\(\bs{K}_0\) の基底を \(\{a_1,\:a_2,\:\cd\:,a_n\}\) とする。\(\bs{K}_0\) が \(\bs{K}\) の真部分集合である、つまり \(\bs{K}_0\:\subsetneq\:\bs{K}\) と仮定して、背理法で証明する。

\(\bs{K}_0\:\subsetneq\:\bs{K}\) だと、\(a_{n+1}\notin\bs{K}_0,\:a_{n+1}\in\bs{K}\) である元 \(a_{n+1}\) が存在する。この \(a_{n+1}\) は \(\{a_1,\:a_2,\:\cd\:,a_n\}\) の1次結合では表せない。なぜなら、もし表せたとしたら、\(\bs{K}_0\) の全ての元は基底である \(\{a_1,\:a_2,\:\cd\:,a_n\}\) の1次結合で表されるので \(a_{n+1}\in\bs{K}_0\) になってしまうからである。

そこで、\(\{a_1,\:a_2,\:\cd\:,a_n,\:a_{n+1}\}\) を考えると、この元の並びは1次独立である。なぜなら、もし1次従属だとすると、
 \(a_1x_1+a_2x_2+\cd+a_nx_n+a_{n+1}x_{n+1}=0\)
となる \(x_i\in\bs{Q}\:\:(1\leq i\leq n+1)\) があって、そのうち少なくとも一つは \(0\) ではない。もし \(x_{n+1}\neq0\) だとすると、\(a_{n+1}\) が \(\{a_1,\:a_2,\:\cd\:,a_n\}\) の1次結合で表されることになり、\(a_{n+1}\in\bs{K}_0\) となって矛盾が生じる。また \(x_{n+1}=0\) だとすると、
 \(a_1x_1+a_2x_2+\cd+a_nx_n=0\)
であるが、この場合は \(x_i\:\:(1\leq i\leq n)\) の中に少なくとも一つは \(0\) でないものがあることになり、\(\{a_1,\:a_2,\:\cd\:,a_n\}\) が基底である(=1次独立である)ことに矛盾する。従って \(\{a_1,\:a_2,\:\cd\:,a_n,\:a_{n+1}\}\) は1次独立である。

\(\{a_1,\:a_2,\:\cd\:,a_n,\:a_{n+1}\}\) の1次結合で表される全ての元の集合を \(\bs{K}_1\) とする。\(\{a_1,\:a_2,\:\cd\:,a_n,\:a_{n+1}\}\) はすべて \(\bs{K}\) の元であるから、\(\bs{K}_1\:\subset\:\bs{K}\) である。また \(\bs{K}_1\) の任意の元は1次独立である \(\{a_1,\:a_2,\:\cd\:,a_n,\:a_{n+1}\}\) の1次結合で表されるから、\(\{a_1,\:a_2,\:\cd\:,a_n,\:a_{n+1}\}\) は \(\bs{K}_1\) の基底であり、すなわち \(\bs{K}_1\) の次元は \(n+1\) である。\(\bs{K}_1=\bs{K}\) なら \(\bs{K}\) の次元が \(n+1\) になって矛盾するから、\(\bs{K}_1\neq\bs{K}\) つまり \(\bs{K}_1\:\subsetneq\:\bs{K}\) である。

以上の論理を繰り返すと \(\bs{K}_2\:\subsetneq\:\bs{K}\) である \(n+2\) 次元の \(\bs{K}_2\) の存在を示せるが、この操作は無限に繰り返えせるから、\(\bs{K}\) は無限個の基底をもつ無限次元の体となる。これは \(\bs{K}\) の次元が有限次元の \(n\) であることに矛盾する。従って背理法の仮定は誤りであり、\(\bs{K}_0\:=\:\bs{K}\) である。[証明終]

代数拡大体の構造
多項式と代数拡大体の相互関係をまとめると次のようになります。


① 体 \(\bs{Q}\) 上の\(\bs{n}\)次多項式 \(f(x)\) が(複素数の範囲で)
 \(f(x)=(x-\al_1)(x-\al_2)\cd(x-\al_n)\)
と因数分解できるとき、
 \(\bs{Q}(\al_1,\:\:\al_2,\:\:\cd\:\:,\:\:\al_n)\)
を \(f(x)\) の最小分解体と言う(32A)。つまり、\(\bs{Q}\) 上の方程式 \(f(x)=0\) の解のすべてを \(\bs{Q}\) に添加した体が最小分解体である。

② すべての代数拡大体は単拡大体である(32B)。従って最小分解体も単拡大体である。つまり原始元 \(\theta\) があって、\(\bs{Q}(\theta)\) と表せる。

③ \(\theta\) の最小多項式を \(\bs{m}\)多項式の \(g(x)\) とすると、\(g(x)\) は既約多項式である(31I)。

④ 方程式 \(g(x)=0\) の解の一つが \(\theta\) であるから、
 \(1,\:\:\theta,\:\:\theta^2,\:\:\cd,\:\:\theta^{m-1}\)
の \(m\)個の元は \(\bs{Q}(\theta)\) の基底である(33F)。つまり \(\bs{Q}(\theta)\) は \(m\)次元である。従って、\(\bs{Q}(\al_1,\:\al_2,\:\cd\:,\:\al_n)\) も \(m\)次元である。


以下、例をいくつかあげます。

 \(x^4-5x^2+6\) 

\(f(x)\) を4次多項式、
 \(f(x)=x^4-5x^2+6\)
とします。\(f(x)\) は、
 \(f(x)=(x^2-2)(x^2-3)\)
と因数分解できるので既約多項式ではありません。また、
 \(f(x)=(x-\sqrt{2})(x+\sqrt{2})(x-\sqrt{3})(x+\sqrt{3})\)
なので、\(f(x)\) の最小分解体は、
 \(\bs{Q}(\sqrt{2},\sqrt{3})\)
です。\(\bs{Q}(\sqrt{2},\:\sqrt{3})\) は、\(\bs{Q}\) 上の方程式 \(x^2-2=0\) の解 \(\sqrt{2}\) による拡大体を \(\bs{Q}(\sqrt{2})\) とし、\(\bs{Q}(\sqrt{2})\) 上の方程式 \(x^2-3=0\) の解 \(\sqrt{3}\) による拡大体が \(\bs{Q}(\sqrt{2},\:\sqrt{3})\) であると見なせます。つまり、
 \(\bs{Q}\:\subset\:\bs{Q}(\sqrt{2})\:\subset\:\bs{Q}(\sqrt{2},\sqrt{3})\)
です。拡大次数は
 \([\:\bs{Q}(\sqrt{2}):\bs{Q}\:]=2\)
 \([\:\bs{Q}(\sqrt{2},\sqrt{3}):\bs{Q}(\sqrt{2})\:]=2\)
 \([\:\bs{Q}(\sqrt{2},\sqrt{3}):\bs{Q}\:]=4\)
です。\(\bs{Q}\) 上の線形空間 \(\bs{Q}(\sqrt{2},\sqrt{3})\) の基底は、
\(\begin{eqnarray}
&&\:\:B_1&=(\:1,\:\sqrt{2},\:1\cdot\sqrt{3},\:\sqrt{2}\cdot\sqrt{3}\:)\\
&&&=(\:1,\:\sqrt{2},\:\sqrt{3},\:\sqrt{6}\:)\\
\end{eqnarray}\)
とすることができます。

一方、
 \(\theta=\sqrt{2}+\sqrt{3}\)
とおくと、
 \(\bs{Q}(\theta)=\bs{Q}(\sqrt{2},\sqrt{3})\)
となります。なぜなら、
 \(\sqrt{2}=\dfrac{1}{2}(\theta-\dfrac{1}{\theta})\)
 \(\sqrt{3}=\dfrac{1}{2}(\theta+\dfrac{1}{\theta})\)
であり、\(\sqrt{2}\) と \(\sqrt{3}\) が \(\theta\) と有理数の加減乗除で表現できるからです。\(\bs{Q}(\sqrt{2},\sqrt{3})\) は \(\bs{Q}(\sqrt{2}+\sqrt{3})\) という単拡大体です。

\(\theta=\sqrt{2}+\sqrt{3}\) から根号を消去すると、
 \(\theta^4-10\theta^2+1=0\)
となるので、\(\theta\)の最小多項式は、
 \(g(x)=x^4-10x^2+1\)
であり、この \(g(x)\) は既約多項式です。\(y=x^2-5\) とおくと、
\(\begin{eqnarray}
&&\:\:g(x)&=y^2-24\\
&&&=(y-2\sqrt{6})(y+2\sqrt{6})\\
\end{eqnarray}\)
なので、
\(\begin{eqnarray}
&&\:\:g(x)&=&(x^2-5-2\sqrt{6})(x^2-5+2\sqrt{6})\\
&&&=&(x-\sqrt{2}-\sqrt{3})(x+\sqrt{2}-\sqrt{3})\cdot\\
&&&& (x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}+\sqrt{3})\\
\end{eqnarray}\)
となり、\(g(x)=0\) の解は、\(\sqrt{2}+\sqrt{3}\)、\(-\sqrt{2}+\sqrt{3}\)、\(\sqrt{2}-\sqrt{3}\)、\(-\sqrt{2}-\sqrt{3}\) の4つです。その \(g(x)=0\) の解の一つが \(\theta=\sqrt{2}+\sqrt{3}\) なので、単拡大体の基底の定理(33F)を適用して、\(\bs{Q}(\theta)\) の基底を、
 \(B_2=(\:1,\:\:\theta,\:\:\theta^2,\:\:\theta^3\:)\)
の4個に選ぶことができます。拡大次数は \([\:\bs{Q}(\theta):\bs{Q}\:]=4\) です。

\(B_1\) と \(B_2\) は、同じ体である \(\bs{Q}(\theta)=\bs{Q}(\sqrt{2},\sqrt{3})\) の基底なので、相互に1次結合で表現できます。\(B_2\) の1次結合で \(B_1\) を表現すると、
 \(\sqrt{2}=\dfrac{1}{2}(\phantom{-}\theta^3-9\theta)\)
 \(\sqrt{3}=\dfrac{1}{2}(-\theta^3+11\theta)\)
 \(\sqrt{6}=\dfrac{1}{2}(\phantom{-}\theta^2-5)\)
となります。

 \(x^3-2\) 

\(f(x)\) を3次多項式、
 \(f(x)=x^3-2\)
とします。これは既約多項式です。

\(x^3-1=0\) 解で \(1\) でないもの一つを \(\omega\) とします(= \(1\) の原始\(3\)乗根)。
 \(x^3-1=(x-1)(x^2+x+1)\)
なので \(\omega\) は、
 \(\omega^2+\omega+1=0\)
を満たします。この2次方程式の解は2つありますが、
 \(\omega=\dfrac{-1+\sqrt{3}\:i}{2}\)
とします。方程式 \(x^3-2=0\) の解は、
 \(\sqrt[3]{2},\:\:\sqrt[3]{2}\omega,\:\:\sqrt[3]{2}\omega^2\)
の3つです、従って、\(f(x)\) の最小分解体は、
 \(\bs{Q}(\sqrt[3]{2},\:\sqrt[3]{2}\omega,\:\sqrt[3]{2}\omega^2)=\bs{Q}(\sqrt[3]{2},\:\omega)\)
です。これは、
 \(\bs{Q}\:\subset\:\bs{Q}(\sqrt[3]{2})\:\subset\:\bs{Q}(\sqrt[3]{2},\:\omega)\)
という構造をしています。基底は、単拡大体の基底の定理(33F)を順次適用して、
 \(\bs{Q}(\sqrt[3]{2})\) の基底(\(\bs{Q}\) 上の線形空間)
  \(1,\:\sqrt[3]{2},\:(\sqrt[3]{2})^2\)
 \(\bs{Q}(\sqrt[3]{2},\:\omega)\) の基底(\(\bs{Q}(\sqrt[3]{2})\) 上の線形空間\()\)
  \(1,\:\omega\)
です。これらを総合すると、
 \(\bs{Q}(\sqrt[3]{2},\:\omega)\) の基底(\(\bs{Q}\) 上の線形空間\()\)
  \(1,\) \(\sqrt[3]{2},\) \((\sqrt[3]{2})^2,\)
  \(\omega,\) \(\sqrt[3]{2}\omega,\) \((\sqrt[3]{2})^2\omega\)
です。拡大次数は
 \([\:\bs{Q}(\sqrt[3]{2}):\bs{Q}\:]=3\)
 \([\:\bs{Q}(\sqrt[3]{2},\:\omega):\bs{Q}(\sqrt[3]{2})\:]=2\)
 \([\:\bs{Q}(\sqrt[3]{2},\:\omega):\bs{Q}\:]=6\)
となります。

\(\bs{Q}(\sqrt[3]{2},\:\omega)\) の原始元 \(\theta\) を、
 \(\theta=\sqrt[3]{2}+\omega\)
と選ぶことができます。なぜなら、計算は省きますが、
 \(\sqrt[3]{2}\)\(=\dfrac{1}{9}(\)\(2\theta^5+3\theta^4+6\theta^3-6\theta^2+9\theta\)\(+18)\)
 \(\omega\)\(=\dfrac{1}{9}(-\)\(2\theta^5-3\theta^4-6\theta^3+6\theta^2\)\(-18)\)
と表せるので、\(\bs{Q}\) に \(\sqrt[3]{2},\:\omega\) を添加した拡大体は \(\theta\) を添加した拡大体と同じものでからです。さらに、
 \(\theta=\sqrt[3]{2}+\dfrac{-1+\sqrt{3}\:i}{2}\)
の式を2乗や3乗して \(i\) と根号を消去すると、計算過程は省きますが、
 \(\theta^6+3\theta^5+6\theta^4+3\theta^3+9\theta+9=0\)
となります。従って、\(\theta\) の最小多項式を \(g(x)\) とすると、
 \(g(x)=x^6+3x^5+6x^4+3x^3+9x+9\)
という6次多項式です。\(\bs{Q}(\sqrt[3]{2},\:\omega)\) は 6次方程式 \(g(x)=0\) の根の一つである \(\theta\) を使って、
 \(\bs{Q}(\sqrt[3]{2},\:\omega)=\bs{Q}(\theta)\)
という単拡大体(次元は \(6\))と表現できます。

 \(x^3-3x+1\) 

1.3 ガロア群」の「ガロア群の例」で書いたように、\(x^3-3x+1=0\) の解を \(\al,\:\beta,\:\gamma\) とすると、
 \(\beta=\al^2-2\)
 \(\gamma=\beta^2-2\)
 \(\al=\gamma^2-2\)
の関係があり、\(\al,\:\beta,\:\gamma\) のどれか一つの加減乗除で他の2つが表現できます。これにより、\(f(x)=x^3-3x+1\) の最小分解体は、
 \(\bs{Q}(\al,\beta,\gamma)=\bs{Q}(\al)=\bs{Q}(\beta)=\bs{Q}(\gamma)\)
です。基底は、たとえば \(1,\:\al,\:\al^2\) であり、
 \([\:\bs{Q}(\al,\beta,\gamma):\bs{Q}\:]=3\)
です。\(\al\) の最小多項式は、3次多項式である \(f(x)=x^3-3x+1\) です。


ちなみに、3次多項式の最小分解体の次元が \(3\) になる条件を書いておきます。まず、2次方程式の例ですが、
 \(x^2+ax+b=0\)
の方程式の解を \(\al,\:\beta\) とすると、
 \(x^2+ax+b=(x-\al)(x-\beta)\)
です。そうすると、根と係数の関係から、
 \(a=-(\al+\beta)\)
 \(b=\al\beta\)
です。ここで、判別式 \(\bs{D}\) を、
 \(D=(\al-\beta)^2\)
と定義すると、
\(\begin{eqnarray}
&&\:\:D=&\al^2-2\al\beta+\beta^2\\
&&&=(\al+\beta)^2-4\al\beta\\
&&&=a^2-4b\\
\end{eqnarray}\)
となります。この判別式を使って解の状況がわかります。つまり、
\(\cdot D\:\geq\:0\) なら2つの実数解(重根は2と数える)
\(\cdot D\:\geq\:0\) で \(\sqrt{D}\) が有理数なら、2つの有理数解
をもちます。

以上を3次方程式に拡張できます。2乗の項がない既約な3次方程式を、
 \(x^3+ax+b=0\)
とし、3つの根を \(\al,\:\beta,\:\gamma\) とすると、
 \(x^3+ax+b=(x-\al)(x-\beta)(x-\gamma)\)
 \((\br{A})\)
  \(\al+\beta+\gamma=0\)
 \((\br{B})\)
  \(\al\beta+\beta\gamma+\gamma\al=a\)
  \(\al\beta\gamma=-b\)
となります。3次方程式の判別式 \(D\) は、
 \(D=(\al-\beta)^2(\beta-\gamma)^2(\gamma-\al)^2\)
で定義されます。計算すると、
 \(D=-4a^3-27b^2\)
となります。

ここで、\(D\) が、ある有理数 \(q\) の2乗の場合を考えます。つまり、
 \(D=q^2\)
です。そうすると、
 \(q=(\al-\beta)(\beta-\gamma)(\gamma-\al)\)
 \((\br{C})\)
です(\(-q\) でも成り立ちますが割愛します)。

\((\br{A})\) 式の両辺を \(x\) で微分して \(x=\al\) を代入すると、
 \(3\al^2+a=(\al-\beta)(\al-\gamma)\)
 \((\br{D})\)
が得られます。\((\br{C})\) 式と \((\br{D})\) 式の両辺同士を割り算すると、
 \(\dfrac{q}{3\al^2+a}=-(\beta-\gamma)\)
 \((\br{E})\)
となります。そうすると、\((\br{B})\) 式と \((\br{E})\) 式を用いて、\(\beta\) と \(\gamma\) を \(\al\) の式として表現できます。その結果は、
 \(\beta=\dfrac{2a\al+3b-q}{2(3\al^2+a)}\)
 \(\gamma=\dfrac{2a\al+3b+q}{2(3\al^2+a)}\)
です。式の形はともかく、要するに、
 \(\beta\) と \(\gamma\) が \(\al\) の加減乗除で表現できる
わけです。このことは、
 \(\bs{Q}(\al,\beta,\gamma)=\bs{Q}(\al)\)
であることを意味します。\(\bs{Q}(\al,\beta,\gamma)\) は、既約な3次方程式の根の一つである \(\al\) の単拡大体なので、その次元は \(3\) です。

まとめると、判別式 \(D\) が有理数の2乗であるとき、既約 \(3\)次多項式の最小分解体の次元が \(3\) になります。\(x^3-3x+1\) の場合、\(a=-3,\:b=1\) なので、
 \(D=-4a^3-27b^2=81=9^2\)
となり、次元が \(3\) です。


既約多項式ではない3次多項式の拡大次数はもっと小さくなります。たとえば \((x-1)(x^2+2)\) の最小分解体は \(\bs{Q}(\sqrt{2}\:i)\) であり、拡大次数は \(2\) です。また \((x-2)^3\) の最小分解体は \(\bs{Q}\) そのもので、拡大次数は \(1\) です。

まとめると、3次多項式 \(f(x)\) の最小分解体の拡大次数は、\(f(x)=0\) の解を \(\al,\:\beta,\:\gamma\) とすると、
 \([\:\bs{Q}(\al,\beta,\gamma):\bs{Q}\:]\:=\:6,\:3,\:2,\:1\)
の4種あることになります(この4種しかないことの理由は後の章にあります)。

 
4.一般の群 
 

ガロア理論の核心(第5章以降)に入る前の最後として、群についての各種の定義や定理を説明します。これらはいずれも第5章以降で必要になります。


4.1 部分群\(\cdot\)正規部分群、剰余類\(\cdot\)剰余群


部分集合の演算
以降の証明では集合の演算が多々出てきます。その定義は次の通りでです。これはあくまで群の "部分集合" に関するもので、それが部分群かどうかは別問題です。


部分集合の演算:41A)

群 \(G\) の2つの部分集合を \(H,\:N\) とする。\(H\) と \(N\) の演算結果である \(G\) の部分集合、\(HN\) を次の式で定義する。

 \(HN\:=\:\{\:hn\:|\:h\in H,\:n\in N,\:hn\) は群の演算定義による \(\}\)

群 \(G\) の元の演算では結合則が成り立つから、部分集合の演算でも結合則が成り立つ。つまり \(H_1,\:H_2,\:H_3\) をを3つの部分群とすると、
 
 \((H_1H_2)H_3=H_1(H_2H_3)\)

である。部分集合の元は \(1\)つでもよいから、\(x\) が \(G\) の元で \(x\) だけの部分集合を \(\{x\}\) とすると、
 \(H_1(\{x\}H_2)=(H_1\{x\})H_2\)
である。これを、
 \(H_1(xH_2)=(H_1x)H_2\)
と記述する。


部分群の定理
部分群に関する定理をいくつかあげます。これらはいずれも後の定理の証明の過程で使います。

 部分群の十分条件 

部分群の十分条件:41B)

群 \(G\) の部分集合を \(N\) とし、\(N\) の任意の2つの元を \(x,\:y\) とする。

 \(xy\in N,\:x^{-1}\in N\)

なら、\(N\) は \(G\) の部分群である。


[証明]

\(N\) の元 \(x,\:y\) は \(G\) の元でもあるので、\(xy,\:x^{-1},\:y^{-1}\) は \(G\) の演算として定義されている。

\(y=x^{-1}\) とおくと \(xy=xx^{-1}=e\in N\) なので、\(N\) は単位元を含む。つまり、\(N\) は演算で閉じていて、単位元が存在し、逆元が \(N\) の元である。また結合則は \(G\) の元として成り立っている。従って \(N\) は \(G\) の部分群である。[証明終]

 部分群の元の条件 

部分群の元の条件:41C)

群 \(G\) の部分群を \(N\) とし、\(G\) の 元を \(x\) とすると、次の2つは同値である。

 ① \(xN\:=\:N\)
 ② \(x\:\in\:N\)


[証明]

[① \(\bs{\Rightarrow}\) ②]
\(N\) には \(G\) の単位元 \(e\) が含まれるから、\(xe\) は \(xN\) に含まれる。
 \(x=xe\in xN=N\) \(\Rightarrow\) \(x\in N\)
である。

[② \(\bs{\Rightarrow}\) ①]
\(x\in N\) とし、\(N\) の任意の元を \(a\) とすると、\(N\) は群だから \(xa\in\:N\) である。\(N\) の異なる2つの元を \(a,\:b\:\:(a\neq b)\) とすると、\(xa\neq xb\) である。なぜなら、もし \(xa=xb\) だとすると、\(x\) の逆元 \(x^{-1}\) を左からかけて \(a=b\) となり、矛盾するからである。以上により、\(xH\) は \(H\) の全ての元を含むから \(xH=H\) である。[証明終]

 部分群の共通部分 

部分群の共通部分は部分群:41D)

\(G\) の部分群を \(H,\:N\) とすると、\(H\cap N\) は部分群である。


[証明]

\(G\) の部分群を \(H,\:N\) とし、\(H\cap N\) の任意の2つの元を \(x,\:y\) とすると、\(x,\:y\in H,\:\:x,\:y\in N\) なので、
 \(xy\in H,\:x^{-1}\in H\)
 \(xy\in N,\:x^{-1}\in N\)
であり、
 \(xy\in H\cap N,\:x^{-1}\in H\cap N\)
となって、部分群の十分条件の定理(41B)により \(H\cap N\) は部分群である。[証明終]

剰余類
剰余類の定義:41E)

有限群 \(G\) の位数を \(n\) とし( \(|G|=n\) )、\(H\) を \(G\) の部分群とする。\(H\) に左から \(G\) のすべての元、\(g_1,\:g_2,\:\cd\:,\:g_n\) かけて、集合、
 \(g_1H,\:g_2H,\:\cd\:,g_nH\)
を作る。

\(g_1H,\:g_2H,\:\cd\:,g_nH\) から、同じになる集合を集めたものを剰余類と呼ぶ。その同じになる集合から代表的なものを一つ取り出し、
 \(xH\:\:(x\in G)\)
の形で剰余類を表す。\(g_1H,\:g_2H,\:\cd\:,g_nH\) から剰余類が \(d\) 個できたとし、それらを、
 \(x_1H,\:x_2H,\:\cd\:,x_dH\)
とすると、
 \(i\neq j\) のとき \(x_iH\:\cap\:x_jH=\phi\)
 \(G=x_1H\:\cup\:x_2H\:\cup\:\cd\:\cup\:x_dH\)
である。剰余類は、群 \(G\) の元を部分群 \(H\) によって分類したものといえる。

\(x_1H,\:x_2H,\:\cd\:,x_dH\) を「左剰余類」という。同じことが \(G\) の元を右からかけたときにも成り立ち、\(Hx_1{}^{\prime},\:Hx_2{}^{\prime},\:\cd\:,Hx_d\,'\) を「右剰余類」という。

群 \(G\) の 部分群 \(H\) による剰余類の個数 \(d\) について、\(d\cdot|H|=|G|\) が成り立つ。この \(d\) を「\(G\) の \(H\) による指数」といい、\([\:G\::\:H\:]\) で表す。つまり、
 \(|G|=[\:G\::\:H\:]\cdot|H|\)
である(ラグランジュの定理)。


[証明]

\(|G|=[\:G\::\:H\:]\cdot|H|\) であることを証明する。2つの剰余類 \(x_1H\) と \(x_2H\) が共通の元をもつとする。その共通な元が、\(x_1H\) では \(x_1h_i\)、\(x_2H\) では \(x_2h_j\) と表されているものとする。
 \(x_1h_i=x_2h_j\)
左から \(x_2^{-1}\)、右から \(h_i^{-1}\) をかけると、
 \(x_2^{-1}x_1h_ih_i^{-1}=x_2^{-1}x_2h_jh_i^{-1}\)
 \(x_2^{-1}x_1=h_jh_i^{-1}\)
\(h_jh_i^{-1}\in H\) だから、
 \(x_2^{-1}x_1\in H\)
を得る。部分群の元の条件の定理(41C)により、\(xH=H\) と \(x\in H\) は同値だから、
 \(x_2^{-1}x_1H=H\)
となる。左から \(x_2\) をかけると、
 \(x_1H=x_2H\)
を得る。これは、「2つの剰余類 \(x_1H\) と \(x_2H\) が共通の元をもつとすると、2つの剰余類は一致する」ことを示している。従って、

2つの剰余類 \(x_1H\) と \(x_2H\) は、\(x_1H=x_2H\) か \(x_1H\cap x_2H=\phi\) のどちらか

である。\(H\) は 単位元 \(e\) を含むから、
 \(g_1H\:\cup\:g_2H\:\cup\:\cd\:\cup\:g_nH\)
という和集合を作ると、そこには \(G\) のすべての元が含まれる。従って、
 \(G=g_1H\:\cup\:g_2H\:\cup\:\cd\:\cup\:g_nH\)
である。剰余類 \(x_1H,\:x_2H,\:\cd\:x_dH\) は、\(g_1H,\:g_2H,\:\cd\:,g_nH\) を整理・分類したものだから、
 \(G=x_1H\:\cup\:x_2H\:\cup\:\cd\:\cup\:x_dH\)
である。この式の右辺の剰余類は共通の元がなく、それぞれの剰余類の元の数はすべて \(|H|\) だから、
 \(|G|=d\cdot|H|\)
である。従ってラグランジュの定理
 \(|G|=[\:G\::\:H\:]\cdot|H|\)
が成り立つ。[証明終]


ラグランジュの定理から、

群 \(G\) の元 \(g\) の位数(\(g^x=e\) となる最小の \(x\))を \(n\) とすると、\(n\) は群位数 \(|G|\) の約数である。

ことがわかります。なぜなら、

 \(H=\{e,\:g,\:g^2,\:\cd\:,\:g^{n-1}\}\)

とおくと、\(H\) は \(G\) の部分群(巡回群)になり、ラグランジュの定理によって \(|H|=n\) が \(|G|\) の約数になるからです。これは、位数の定理25A)の[補題5]

既約剰余類群 \((\bs{Z}/n\bs{Z})^{*}\) の元を \(a\) とし、\(a\) の位数を \(d\) とすると、\(d\) は 群位数 の約数である。

の一般化になっています。 \((\bs{Z}/n\bs{Z})^{*}\) の群位数は \(\varphi(n)\)(\(\varphi\)はオイラー関数)なので、ラグランジュの定理はオイラーの定理やフェルマの小定理(25B)の一般化であるとも言えます。さらに、

群位数が素数の群は巡回群である。

こともわかります。なぜなら、群 \(G\) の位数を \(p\)(素数)とすると、単位元ではない \(G\) の任意の元 \(g\:(\neq e)\) の位数は \(p\) であり、つまり \(G\) は \(g\) を生成元とする位数 \(p\) の巡回群(\(C_p\))だからです。


次の「正規部分群」はガロア理論のキモといえる概念です。これは純粋に群の属性として定義できるのでここにあげますが、ガロア理論の核心である第5章以降で展開される論証の多くは正規部分群に関係しています。

正規部分群
正規部分群の定義:41F)

有限群 \(G\) の部分群を \(H\) とする。\(G\) の全ての元 \(g\) について、

 \(gH=Hg\)

が成り立つとき、\(H\) を \(G\) の正規部分群(normal subgroup)という。正規部分群では左剰余類と右剰余類が一致する。

定義により、\(G\) および \(\{e\}\) は \(G\) の正規部分群である。また \(G\) が可換群であると、その部分群は正規部分群である。巡回群は可換群だから、巡回群の部分群は正規部分群である。


正規部分群 \(H\) の定義は、\(G\) の任意の元 \(g\) に対して、
 \(gHg^{-1}=H\)
となる \(H\)、としても同じです。また 任意の \(h\in H\) について、
 \(ghg^{-1}\in H\)
となる \(H\)、としても同じです。

剰余群
剰余群の定義:41G)

有限群 \(G\) の正規部分群を \(H\) とする。\(G\) の \(H\) による剰余類

 \(x_1H,\:x_2H,\:\cd\:,x_dH\:\:(\:x_i\in G,\:d=[\:G\::\:H\:]\:)\)

部分集合の演算の定義(41A)で群になる。この群を \(G\) の \(H\) による剰余群(quotient group)といい、\(G/H\) で表す。剰余群は商群とも言う。


[証明]

\(H\) が正規部分群のとき、剰余類が群になることを証明する。\(x_iH\) は \(G\) の剰余類なので、

 \(G=x_1H\cup x_2H\cup\cd\cup x_dH\)
   \((i\neq j\:のとき\:x_iH\cap x_jH=\phi)\)

と表されている。2つの剰余類、\(x_iH,\:x_jH\) の演算を行うと、
\(\begin{eqnarray}
&&\:\:(x_iH)(x_jH)&=x_iHx_jH=x_i(Hx_j)H\\
&&&=x_i(x_jH)H=x_ix_jHH\\
&&&=x_ix_j(HH)=x_ix_jH\\
\end{eqnarray}\)
つまり、
\(\begin{eqnarray}
&&\:\:(x_iH)(x_jH)&=x_ix_jH\\
\end{eqnarray}\)
となる。\(H\) は正規部分群なので \(Hx_j=x_jH\) であることと、\(H\) は部分群なので \(HH=H\) であることを用いた。

\(x_ix_j\) は \(G\) の元だから、\(x_ix_jH\) は \(G\) の剰余類のうちの一つである。従って \((x_iH)(x_jH)\) の演算は \(G\) の剰余類の中で閉じている。また、
 \((x_iH\cdot x_jH)\cdot x_kH=x_ix_jH\cdot x_kH=x_ix_jx_kH\)
 \(x_iH\cdot(x_jH\cdot x_kH)=x_iH\cdot x_jx_kH=x_ix_jx_kH\)
 \((x_iH\cdot x_jH)\cdot x_kH=x_iH\cdot(x_jH\cdot x_kH)\)
であるから、結合法則が成り立っている。さらに、
 \(H\cdot xh=eH\cdot xH=(ex)H=xH\)
 \(xH\cdot H=xH\cdot eH=(xe)H=xH\)
なので、剰余類 \(H\) が単位元になる。また、
 \(xH\cdot x^{-1}H=(xx^{-1})H=eH=H\)
 \(x^{-1}H\cdot xH=(x^{-1}x)H=eH=H\)
であり、\(xH\) に対する逆元は \(x^{-1}H\) である。従って剰余類 \(G/H\) は群である。[証明終]


群の位数、元の位数、ラグランジュの定理、巡回群は、いずれも有限群の概念や定理です。しかし、剰余類、正規部分群、剰余群は、元の数が無限であっても成り立つ概念です。たとえば、整数の加法群 \(\bs{Z}\) は可換群なので、すべての部分群は正規部分群です。従って、\(n\) の倍数から成る部分群を \(n\bs{Z}\) とすると、\(\bs{Z}/n\bs{Z}\) は剰余群です。\(\bs{Z}/n\bs{Z}\) という表記は \(n\bs{Z}\) が \(\bs{Z}\) の正規部分群であることが暗黙の前提なのでした。


巡回群の剰余群は巡回群:41H)

巡回群の部分群による剰余群は巡回群である。


[証明]

群 \(G\) を、位数 \(n\)、生成元 \(g\) の巡回群とし、その元を、

 \(G\:=\:\{g,\:g^2,\:g^3,\:\cd,\:g^n=e\:\}\)

とする。\(G\) の部分群を \(H\) とし、\(H\) の元のうち \(g\) の指数が一番小さいものを \(g^{d}\:\:(1\leq d\leq n)\) とする。\(d=1\) なら \(H=G\) であり、また \(d=n\) なら \(H=\{\:e\:\}\) である。

\(n\) を \(d\) で割った商を \(q\)、余りを \(r\) とする。つまり、
 \(n=qd+r\:\:(1\leq q\leq n,\:0\leq r < d)\)
とする。\(g^d\) は \(H\) の元だから その \(q\) 乗も \(H\) の元であり、
 \((g^d)^q=g^{dq}\in H\)
である。また \(g^{dq}\) の逆元も \(H\) に含まれるから
 \((g^{dq})^{-1}\in H\)
である。仮にもし \(1\leq r < d\) なら
 \(g^{dq}g^{r}=g^{qd+r}=g^n=e\)
となるので、この式に左から \((g^{dq})^{-1}\) をかけると、
 \(g^r=(g^{dq})^{-1}\in H\)
となり、\(d\) 未満の数 \(r\) が指数の \(g^r\) が \(H\) の元ということになるが、これは \(d\) が最小の指数であるという仮定に反する。従って \(r=0\) であり、\(qd=n\) である。つまり \(d\) と \(q\) は \(n\) の約数である。そうすると \(g^d\) を \(q\) 乗すると \(g^{dq}=g^n=e\) となるので、\(H\) は \(g^d\) を生成元とする位数 \(q\) の巡回群、
 \(H=\{\:g^{d},\:g^{2d},\:\cd,\:g^{qd}=g^n=e\:\}\)
 \((\br{A})\)
である。また、\(G\) は巡回群、つまり可換群だから、その部分群である \(H\) は \(G\) の正規部分群である。


次に、剰余類 \(g^kH\:\:(1\leq k\leq n)\) を考える。\(k\) を \(d\) で割った商を \(m\)、余りを \(i\) とする。\(qd=n\) なので \(m\) の最大値は \(q\) であり、
 \(k=md+i\) \((0\leq m\leq q,\:0\leq i < d)\)
と表現できる。以下、\(m,\:i\) の値によって3つに分ける。

\(k=i\:\:(m=0,\:1\leq i < d)\) のときは、\(H\) が単位元を含んでいるので、
 \(g^k=g^i\in g^iH\)
である。

\(m\neq0,\:1\leq i < d\) のときは、
 \(g^k=g^{md+i}=g^ig^{md}\)
となるが、\((\br{A})\) 式により、
 \(g^{md}\in H\:\:(1\leq m\leq q)\)
なので、
 \(g^ig^{md}\in g^iH\)
 \(g^k\in g^iH\:\:(1\leq i < d)\)
となる。

また、\(m\neq0,\:i=0\) のときは、
 \(g^k=g^{md}\in H\)
である。

結局、\(G\) の元 \(g^k\) は、\(\{\:H,\:g^iH\:\:(1\leq i < d)\:\}\) のどれかに含まれる。ここで、形式上 \(g^0H\:=\:H\) と定義すると、\(H,\:g^iH\) は、
 \(g^iH\:=\:\{\:g^{i+md}\:|\:0\leq i < d,\:\:0\leq m\leq q\:\}\)
と表記できる。\(0\leq i,j < d,\:\:0\leq m_i,m_j\leq q\) で、\(i\neq j\) なら、
 \(i+m_id\neq j+m_jd\)
なので、\(g^iH\) と \(g^jH\) に共通の元はなく、
 \(g^iH\:\cap\:g^jH=\phi\:\:(i\neq j)\)
である。

以上より、巡回群 \(G\) は剰余類によって、
 \(G=H\:\cup\:gH\:\cup\:g^2H\:\cup\:\cd\:\cup\:g^{d-1}\)
 \(g^iH\:\cap\:g^jH=\phi\) \((i\neq j)\)
と分解できる。

\(H\) は \(G\) の正規部分群であった。従って \(G\) の \(H\) による剰余類は剰余群になり、
 \(G/H=\{\:H,\:gH,\:g^2H,\:\cd\:,g^{d-1}H\:\}\)
である。ここで \(gH\) の累乗を調べると、
 \((gH)^2=gHgH=ggHH=g^2H\)
 \((gH)^3=gHgHgH=g^2HgH=g^2gHH=g^3H\)
のように計算でき、
 \((gH)^i=g^iH\) \((1\leq i\leq d-1)\)
である。また、同じ計算によって、
 \((gH)^d=g^dH\)
となるが、\(g^d\in H\) なので部分群の元の条件の定理(41C)により \(g^dH=H\) であり、つまり、
 \((gH)^d=H\)
である。

以上により 剰余群 \(G/H\) は、
 \(G/H=\{gH,\:(gH)^2,\:\cd\:,(gH)^{d-1},\:(gH)^{d}=H\}\)
と表され、生成元が \(gH\)、単位元が \(H\)、位数が \(d\) の巡回群である。[証明終]

部分群と正規部分群
部分群と正規部分群:41I)

\(G\) の正規部分群を \(H\)、部分群を \(N\) とする。このとき、

(a) \(NH\) は \(G\) の部分群である。
(b) \(G\:\sp\:N\:\sp\:H\) なら、\(H\) は \(N\) の正規部分群である。
(c) \(N\cap H\) は \(N\) の正規部分群である。

が成り立つ。


(a) の証明
\(G\) の正規部分群を \(H\)、 部分群を \(N\) とするとき、\(NH\) は部分群である。

\(NH\) の任意の2つの元を
 \(nx\:\:(n\in N,\:x\in H),\:\:my\:\:(m\in N,\:y\in H)\)
とすると、
 \(nx\in nH,\:my\in mH\)
である。\(H\) は正規部分群だから、\(mH=Hm\) であることを用いると、
 \((nx)(my)\in(nH)(mH)=nHmH=nmHH=nmH\)
となる。\(n,m\in N\) なので \(nm\in N\) であり、従って \(nmH\subset NH\) である。結局、
 \((nx)(my)\in NH\)
となって、\(NH\) の2つの元の演算は \(NH\) で閉じていることが分かる(=\(\:\br{①}\:\))。

また一般に、\((xy)^{-1}=y^{-1}x^{-1}\) である。なぜなら、
 \(xy(y^{-1}x^{-1})=x(yy^{-1})x^{-1}=xex^{-1}=xx^{-1}=e\)
 \((y^{-1}x^{-1})xy=y^{-1}(x^{-1}x)y=y^{-1}ey=y^{-1}y=e\)
が成り立つからである。

\(G\) の部分群 \(N\) と正規部分群 \(H\) において、\(n\in N,\:x\in H\) とすると、\(n^{-1}\in N,\:x^{-1}\in H\) なので、
 \((nx)^{-1}=x^{-1}n^{-1}\in Hn^{-1}\)
となるが、\(H\) が正規部分群なので、\(Hn^{-1}=n^{-1}H\)である。さらに、\(n^{-1}H\subset NH\) なので、結局、
 \((nx)^{-1}\subset NH\)
となり、\(NH\) の任意の元 \(nx\) について逆元 \((nx)^{-1}\) が \(NH\) に含まれる(=\(\:\br{②}\:\))。

\(\br{①}\:\:\br{②}\) が成り立つので、部分群の十分条件の定理(41B)によって \(NH\) は \(G\) の部分群である。[証明終]

(b) の証明
\(G\) の正規部分群を \(H\)、部分群を \(N\) とするとき、\(G\:\sp\:N\:\sp\:H\) なら、\(H\) は \(N\) の正規部分群である。

\(H\) は \(G\) の正規部分群だから、\(G\) の任意の元 \(x\) について
 \(xH=Hx\)
が成り立つ。\(N\) は \(G\) の 部分集合だから、\(N\) の任意の元 \(y\) についても、
 \(yH=Hy\)
が成り立つ。従って \(H\) は \(N\) の正規部分群である。[証明終]

(c) の証明
\(G\) の正規部分群を \(H\)、 部分群を \(N\) とするとき、\(N\cap H\) は \(N\) の正規部分群である。

\(H\) は \(G\) の正規部分群だから、\(G\) の任意の元 \(x\) について
 \(xH=Hx\)
が成り立つ。この式に右から \(x^{-1}\) をかけると、
 \(xHx^{-1}=H\)
となる。これは、\(H\) の任意の元 \(h\) を決めると、\(G\) の任意の元 \(x\) について、
 \(xhx^{-1}\in H\)
となることを意味する。これは \(H\) が正規部分群であることの定義と等価である。以降、この形で \(N\cap H\) が正規部分群であることを証明する。

部分群 \(N\) の任意の元を \(y\)、正規部分群 \(H\) の任意の元を \(h\)、\(N\cap H\) の任意の元を \(n\) とする。\(y,\:y^{-1},\:n\) は全て \(N\) の元だから、
 \(yny^{-1}\in N\)
である(=\(\:\br{①}\:\))。また \(H\) は \(G\) の正規部分群であるから、\(G\) の任意の元 \(x\) について、
 \(xhx^{-1}\in H\)
が成り立つ。ここで、\(G\:\sp\:N\) なので \(x=y\) とおくことができ、また \(H\:\sp\:N\cap H\) なので \(h=n\) とおくこともできる。従って、
 \(yny^{-1}\in H\)
である(=\(\:\br{②}\:\))。\(\br{①}\:\:\br{②}\) より、\(N\cap H\) の任意の元 \(n\) を決めると、\(N\) の全ての元 \(y\) について、
 \(yny^{-1}\in N\cap H\)
となる。つまり \(N\cap H\) は \(N\) の正規部分群である。[証明終]


4.2 準同型写像


この節の写像の説明には「全射」「単射」「全単射」などの用語ができてます。その用語の意味は次の図の通りです。

写像.jpg
全射:\(G\,'\)の任意の元 \(y\) について \(f(x)=y\) となる \(x\in G\) がある。 単射:\(x\neq y\:(x,y\in G)\) なら \(f(x)\neq f(y)\)。 全単射:全射かつ単射。

準同型写像と同型写像
準同型写像と同型写像:42A)

群 \(G\) から群 \(G\,'\) への写像 \(f\) がある。\(G\) の任意の2つの元、\(x,\:y\) について、

 \(f(xy)=f(x)f(y)\)

が成り立つとき、\(f\) を \(G\) から \(G\,'\) への準同型写像(homomorphism)という。右辺は群 \(G\,'\) の演算定義に従う。

また、\(f\) が全単射写像のとき、\(f\) を同型写像(isomorphism)という。群 \(G\) から \(G\,'\) への同型写像が存在するとき、\(G\) と \(G\,'\) は同型であるといい、
 \(G\:\cong\:G\,'\)
で表す。


準同型写像の像と核
準同型写像の像と核:42B)

群 \(G\) から群 \(G\,'\) への準同型写像 \(f\) がある。\(G\) の元を \(f\) で移した元の集合を「\(f\) の像(image)」といい、\(\mr{Im}\:f\) と書く。\(\mr{Im}\:f\) を \(f(G)\) と書くこともある。

\(\mr{Im}\:f\) は \(G\,'\) の部分群である。

\(G\) の単位元を \(e\)、\(G\,'\) の単位元を \(e\,'\) とする。準同型写像 \(f\) によって \(e\,'\) に移る \(G\) の元の集合を「\(f\) の核(kernel)」といい、\(\mr{Ker}\:f\) と書く。

\(\mr{Ker}\:f\) は \(G\) の部分群である。


準同型写像.jpg

[証明]

\(\mr{Im}\:f\) と \(\mr{Ker}\:f\) が群であることを証明する。

 \(\mr{Im}\:f\) は群 

\(\mr{Im}\:f\) の任意の2つの元を \(f(x),f(y)\:\:(x,y\in G)\) とすると、
 \(f(x)f(y)=f(xy)\:\in\mr{Im}\:f\)
である(=\(\:\br{①}\:\))。

\(\mr{Im}\:f\) の任意の元 \(f(x)\) について、
 \(f(e)f(x)=f(ex)=f(x)\)
 \(f(x)f(e)=f(xe)=f(x)\)
なので、
 \(f(e)=e\,'\)
である。\(G\) は群なので、任意の元 \(x\) について逆元 \(x^{-1}\) が存在する。
 \(f(x)f(x^{-1})=f(xx^{-1})=f(e)=e\,'\)
 \(f(x^{-1})f(x)=f(x^{-1}x)=f(e)=e\,'\)
であるから、
 \(f(x)^{-1}=f(x^{-1})\:\in\mr{Im}\:f\)
である(=\(\:\br{②}\:\))。\(\br{①}\:\:\br{②}\) より、部分群の十分条件の定理(41B)によって \(\mr{Im}\:f\) は \(G\,'\) の部分群である。

 \(\mr{Ker}\:f\) は群 

\(\mr{Ker}\:f\) の任意の元を \(x,\:y\) とすると、
 \(f(xy)=f(x)f(y)=e\,'e\,'=e\,'\)
なので、
 \(xy\:\in\mr{Ker}\:f\)
である(\(\:\br{③}\:\))。

また \(x\) は \(G\) の元だから \(x^{-1}\) が定義されている。
\(\begin{eqnarray}
&&\:\:f(x^{-1})&=f(x^{-1})e\,'=f(x^{-1})f(x)\\
&&&=f(x^{-1}x)=f(e)\\
&&&=e\,'\\
\end{eqnarray}\)
となるので、
 \(x^{-1}\:\in\mr{Ker}\:f\)
である(\(\:\br{④}\:\))。\(\br{③}\:\:\br{④}\) より、部分群の十分条件の定理(41B)によって \(\mr{Ker}\:f\) は \(G\) の部分群である。[証明終]

核が単位元なら単射
核が単位元なら単射:42C)

群 \(G\) から群 \(G\,'\) への準同型写像 \(f\) がある。このとき

 \(\mr{Im}\:f\) \(=\:G\,'\) なら \(f\) は全射
 \(\mr{Ker}\:f\) \(=\:\{e\}\) なら \(f\) は単射

である。


[証明]

"\(f\) は全射" については、全射の定義そのものである。

\(\mr{Ker}\:f\:=\:\{e\}\) とし、\(G\) の任意の2つの元を \(x,\:y\) とする。ここで、
 \(f(x)=f(y)\)
であったとする。\(\mr{Im}\:f\) は群だから \(f(y)^{-1}\in\:\mr{Im}\:f\) である。上の式に左から \(f(y)^{-1}\) をかけると、
 \(f(y)^{-1}f(x)=f(y)^{-1}f(y)\)
 \(f(y^{-1})f(x)=e\,'\)
 \(f(y^{-1}x)\in\:\mr{Ker}\:f\)
 \(y^{-1}x=e\)
 \(x=y\)
となる。\(f(x)=f(y)\) であれば \(x=y\) なので、\(f\) は単射である。[証明終]

核は正規部分群
核は正規部分群:42D)

群 \(G\) から群 \(G\,'\) への準同型写像を \(f\) とする。このとき \(\mr{Ker}\:f\) は \(G\) の正規部分群である。


[証明]

\(\mr{Ker}\:f\) を \(H\) と記述する。\(G\) の 任意の元を \(x\) とし、\(H\) の任意の元を \(y\) とする。すると、
\(\begin{eqnarray}
&&\:\:f(xyx^{-1})&=f(x)f(y)f(x^{-1})\\
&&&=f(x)e\,'f(x^{-1})=f(x)f(x^{-1})\\
&&&=f(xx^{-1})=f(e)=e\,'\\
\end{eqnarray}\)
と計算できるから、
 \(xyx^{-1}\in H\)
である。\(y\) は \(H\) の任意の元だから、
 \(xHx^{-1}\subset H\)
である。\(x\) は任意にとることができるので、\(x\) を \(x^{-1}\) に置き換えると、
 \(x^{-1}Hx\subset H\)
を得る。この式に左から \(x\)、右から \(x^{-1}\) をかけると、
 \(H\subset xHx^{-1}\)
となる。つまり
 \(H\subset xHx^{-1}\subset H\)
 \(xHx^{-1}=H\)
である。さらに右から \(x\) をかけると、
 \(xH=Hx\)
となり、\(x\) は任意の \(G\) の元だから、\(H\:\:(=\mr{Ker}\:f)\) は \(G\) の正規部分群である。[証明終]


4.3 同型定理


準同型定理=第1同型定理
準同型定理:43A)

群 \(G\) から群 \(G\,'\) への準同型写像 \(f\) がある。\(H=\mr{Ker}\:f\) とすると、\(G\) の \(H\) による剰余群は、\(G\) の \(f\) による像と同型である。つまり、

 \(G/H\:\cong\:\mr{Im}\:f\)

が成り立つ。


[証明]

\(H\:=\:\mr{Ker}\:f\) は、核は正規部分群の定理(42D)により、\(G\) の正規部分群である。従って剰余群 \(G/H\) が定義できる。\(G/H\) から \(\mr{Im}\:f\) への写像 \(\sg\) を、

\(\begin{eqnarray}
&&\:\:\sg\:: &G/H &\longrightarrow&\mr{Im}\:f\\
&&&xH &\longmapsto&f(x)\\
\end{eqnarray}\)

と定義する。まず、この写像が剰余類 \(xN\) の代表元 \(x\) のとりかたに依存しないこと、つまり \(xH=yH\) なら \(f(x)=f(y)\) であることを示す。\(xH=yH\) を変形すると、
 \(xH=yH\)
 \(y^{-1}xH=y^{-1}yH\)
 \(y^{-1}xH=H\)
ゆえに部分群の元の条件の定理(41C)から \(y^{-1}x\in H\) である。そうすると、\(H\) は \(\mr{Ker}\:f\) のことだから、\(f(y^{-1}x)=e\,'\) である。これを変形すると、
 \(f(y^{-1}x)=e\,'\)
 \(f(y^{-1})f(x)=e\,'\)
 \(f(y)^{-1}f(x)=e\,'\)
となる。最後の変形では、準同型写像の像と核の定理(42B)の「\(\mr{Im}\:f\) は群」の証明から、\(f(y^{-1})=f(y)^{-1}\) であることを用いた。ここから、
 \(f(y)^{-1}f(x)=e\,'\)
 \(f(y)f(y)^{-1}f(x)=f(y)e\,'\)
 \(f(x)=f(y)\)
となり、\(f(x)=f(y)\) が証明できた。

以上の変形は逆も辿れる。つまり、
 \(f(x)=f(y)\)
 \(f(y)f(y)^{-1}f(x)=f(y)e\,'\)
 \(f(y)^{-1}f(x)=e\,'\)
 \(f(y^{-1})f(x)=e\,'\)
 \(f(y^{-1}x)=e\,'\)
 \(f(y^{-1}x)\in H\)
 \(y^{-1}xH=H\)
 \(xH=yH\)
となる。これは \(f(x)=f(y)\) なら \(xH=yH\) であることを示していて、すなわち \(\sg\) は単射である。と同時に、\(\sg\) による写像の先は \(\mr{Im}\:f\) に限定しているので \(\sg\) は全射である。つまり \(\sg\) は 全単射である(=\(\:\br{①}\:\))。

さらに、
\(\begin{eqnarray}
&&\:\:\sg((xH)(yH))&=\sg(x(Hy)H)=\sg(x(yH)H)\\
&&&=\sg(xyH)=f(xy)=f(x)f(y)\\
&&&=\sg(xH)\sg(yH)\\
\end{eqnarray}\)
であり、つまり \(\sg((xH)(yH))=\sg(xH)\sg(yH)\) が成り立っている(=\(\:\br{②}\:\))。

\(\br{①}\:\:\br{②}\) により \(\sg\) は同型写像である。\(G/H\) から \(\mr{Im}\:f\) への同型写像が存在するから、
 \(G/H\:\cong\:\mr{Im}\:f\)
である。[証明終]

第2同型定理
第2同型定理:43B)

群 \(G\) の正規部分群を \(H\)、部分群を \(N\) とすると、

 \(N/(N\cap H)\:\cong\:NH/H\)

が成り立つ。


第2同型定理.jpg

[証明]

まず、部分群と正規部分群の定理(41I)により、\(G\) の正規部分群が \(H\)、部分群が \(N\) の場合、
・ \(N\cap H\) は \(N\) の正規部分群
・ \(NH\) は \(G\) の部分群
・ \(G\:\sp\:NH\:\sp\:H\) なので、\(H\) は \(NH\) の正規部分群
である。従って剰余群の定義(41G)により、\(N/(N\cap H)\) および \(NH/H\) は剰余群となる。

\(G\) の任意の元を \(x,\:y\) とし、\(G\) から \(G/H\) への写像 \(\sg\) を、
\(\begin{eqnarray}
&&\:\:\sg\:: &G &\longrightarrow&G/H\\
&&&x &\longmapsto&xH\\
\end{eqnarray}\)
と定義する。この写像は、
\(\begin{eqnarray}
&&\:\:\sg(xy)&=xyH=xyHH=xHyH=(xH)(yH)\\
&&&=\sg(x)\sg(y)\\
\end{eqnarray}\)
を満たすから準同型写像である(ちなみに \(G\) とその正規部分群 \(H\) があるとき、上記の定義による \(\sg\) を自然準同型と呼ぶ)。

\(\sg\) の定義域は \(G\) であるが、\(\sg\) の定義域を \(G\) の部分群である \(N\) に制限した写像 \(\tau\)(タウ) を考える。\(N\) の任意の元を \(z\) とすると、
\(\begin{eqnarray}
&&\:\:\tau\:: &N &\longrightarrow&G/H\\
&&&z &\longmapsto&zH\\
\end{eqnarray}\)
である。この \(\tau\) の像 \(\mr{Im}\:\tau\) を考えてみると、\(z\) が \(N\) の元のすべてを動くとき、\(\tau(z)=zH\) として出てくる \(G\) の元は \(NH\) の元である。つまり \(\tau\) は、
\(\begin{eqnarray}
&&\:\:\tau\:: &N &\longrightarrow&G/H\\
\end{eqnarray}\)
として定義したが、\(\tau(z)\) が \(G/H\) の全てを尽くすわけではなく、全射ではない。写像による移り先は、\(G\) の部分群 \(NH\) を \(H\) で分類した剰余群、\(NH/H\) である。つまり \(\tau(N)=NH/H\) であり、
 \(\mr{Im}\:\tau=NH/H\)
である。

次に準同型写像の核を考える。\(G/H\) の単位元は、
 \(xH\cdot H=xH\)
 \(H\cdot xH=HxH=xHH=xH\)
なので、\(H\) である。

\(G\) の元 \(x\) が \(\mr{Ker}\:\sg\) の元とする。つまり、
 \(x\in\mr{Ker}\:\sg\)
とする。これは \(\sg(x)\) が \(G/H\) の単位元になるということだから、
 \(\sg(x)=H\)
であり、\(\sg(x)=xH\) なので、
 \(xH=H\)
である。これは部分群の元の条件の定理(41C)によって、
 \(x\in H\)
と同値である。従って、
 \(x\in\mr{Ker}\:\sg\)
 \(x\in H\)
の2つは同値であり、つまり、
 \(\mr{Ker}\:\sg=H\)
である。

\(\tau\) は \(\sg\) の定義域を \(N\) に制限したものなので、\(\mr{Ker}\:\tau\) は「\(\mr{Ker}\:\sg=H\) のうちで \(N\) に含まれるもの」であり、すなわち、
 \(\mr{Ker}\:\tau=(N\cap H)\)
である。

ここで、\(\tau\) の定義である、
\(\begin{eqnarray}
&&\:\:\tau\:: &N &\longrightarrow&G/H\\
\end{eqnarray}\)
準同型定理43A)を適用すると、
\(\begin{eqnarray}
&&\:\:N/(\mr{Ker}\:\tau) &\cong\:\mr{Im}\:\tau\\
&&\:\:N/(N\cap H) &\cong\:NH/H\\
\end{eqnarray}\)
となって、題意が成り立つ。[証明終]


第2同型定理を整数の剰余群で確認してみます。上の定理における \(G,\:H,\:N\) を、
 \(G=\bs{Z}\)
 \(H=10\bs{Z}\) (\(10\) の倍数)
 \(N=\phantom{1}6\bs{Z}\) (\(\phantom{1}6\) の倍数)
の群とします。この群の演算は加算であり、可換群なので、\(\bs{Z}\) の部分群はすべて正規部分群です。

\(N\cap H\) は「\(10\) の倍数、かつ \(6\) の倍数」の集合なので、
 \(N\cap H=30\bs{Z}\)
です。また \(NH\) は、\(10\) の倍数と\(6\) の倍数の加算の結果の集合です。つまり、
 \(NH=\{\:10x+6y\:|\:x,y\in\bs{Z}\:\}\)
ですが、これが何を意味するかは不定方程式の解の存在の定理(21B)から分かります。定理を再掲すると、

2変数 \(x,\:y\) の1次不定方程式を、
 \(ax+by=c\)
  (\(a,\:b,\:c\) は整数。\(a\neq0,\:b\neq0\))
とし、\(a\) と \(b\) の最大公約数を \(d\) とする。このとき、
 \(c=kd\) (\(k\) は整数)
なら方程式は整数解を持ち、そうでなければ整数解を持たない。

です。\(c=kd\) なら、式を満たす \(x,\:y\) が必ず存在します。また任意の \(x,\:y\) について \(ax+by\) を計算すると、その結果の \(c\) は必ず \(c=kd\) の形になります。そうでなければ、\(c\) が最大公約数の倍数でないにも関わらず不定方程式が解をもつことになって定理に矛盾します。従って、\(ax+by=c\) の \(x,\:y\) を任意の整数とすると、\(c\) は \(a,\:b\) の "最大公約数の整数倍のすべて" になります。
 \(NH=\{\:10x+6y\:|\:x,y\in\bs{Z}\:\}\)
とした場合、\(10\) と \(6\) の最大公約数は \(2\) なので、
 \(NH=2\bs{Z}\)
です。この結果、
 \(N/(N\cap H)\)
  \(=6\bs{Z}/30\bs{Z}\)
  \(=\{30\bs{Z},\:6+30\bs{Z},\:12+30\bs{Z},\:18+30\bs{Z},\:24+30\bs{Z}\}\)
 \(NH/H\)
  \(=2\bs{Z}/10\bs{Z}\)
  \(=\{10\bs{Z},\:2+10\bs{Z},\:4+10\bs{Z},\:6+10\bs{Z},\:4+10\bs{Z}\}\)
となります。この2つの剰余群は位数 \(5\) の巡回群( \(C_5\) )で、\(\bs{Z}/5\bs{Z}\) に同型です。つまり、
 \(N/(N\cap H)\) \(\cong\:\bs{Z}/5\bs{Z}\)
 \(NH/H\) \(\cong\:\bs{Z}/5\bs{Z}\)
であり、
 \(N/(N\cap H)\:\cong\:NH/H\)
となって、第2同型定理が確認できました。

第2同型定理(整数).jpg
第2同型定理 : \(\bs{6\bs{Z}/30\bs{Z}\:\cong\:2\bs{Z}/10\bs{Z}}\)

この図をみると、\(NH/H=2\bs{Z}/10\bs{Z}\) と \(N/(N\cap H)=6\bs{Z}/30\bs{Z}\) が同型であることがヴィジュアルにイメージできる。両方とも位数 \(5\) の巡回群である。

第2同型定理を数式で書くと何だか難しそうな感じがしますが、図にするといかにも自明なことという気がします。数学におけるイメージ図の威力が実感できます。

第2同型定理は、後ほど「可解群の部分群は可解群」という定理の証明に使います。「可解群の部分群は可解群」の定理は、5次方程式に可解でないものがあることを証明する際に鍵となる定理です。その第2同型定理は準同型定理を使って証明される、という構造になっているのでした。

 
5.ガロア群とガロア対応 
 

2章から4章までは、多項式、体、線形空間、剰余類、群、剰余群、既約剰余類群、正規部分群といった、ガロア理論の基礎となる概念の説明でした。この第5章から、理論の核心に入っていきます。


5.1 体の同型写像


同型写像の定義
体の同型写像:51A)

体 \(\bs{K}\) から 体 \(\bs{F}\) への写像 \(f\) が全単射であり、\(\bs{K}\) の任意の元、\(x,\:y\) に対して、
\(\begin{eqnarray}
&&\:\:f(x+y)&=f(x)+f(y)\\
&&\:\:f(xy)&=f(x)f(y)\\
\end{eqnarray}\)
が成り立つとき、\(f\) を体の同型写像という。この定義による同型写像は、加法と乗法のみならず、四則演算を保存する。

特に、\(\bs{K}\) から \(\bs{K}\) への同型写像を自己同型写像という。

\(\bs{K}\) から \(\bs{F}\) への同型写像が存在するとき、体 \(\bs{K}\) と 体 \(\bs{F}\) は同型であるといい、\(\bs{K}\:\cong\:\bs{F}\) で表す。

体 \(\bs{K}\) と \(\bs{F}\) がともに \(\bs{Q}\) を含むとき、\(a\in\bs{Q}\) に対して、
 \(f(a)=a\)
である。つまり有理数は同型写像で不変である。


[証明]

上の定義による同型写像が、減法と除法を保存することを証明する。\(\bs{K}\) と \(\bs{F}\) は体だから、加法と乗法について群になっている。\(\bs{K}\) の加法の単位元を \(\kz\)、\(\bs{F}\) の加法の単位元を \(\fz\) とする。また、乗法の単位元をそれぞれ \(\ko\) と \(\fo\) とする。まず、\(f(\ko)=\fo\) で \(f(\kz)=\fz\) であることを示す。

\(f(x+y)=f(x)+f(y)\) において \(x=\kz,\:y=\kz\) とすると、
 \(f(\kz+\kz)=f(\kz)+f(\kz)\)
 \(f(\kz)=f(\kz)+f(\kz)\)
両辺に \(\bs{F}\) における \(f(\kz)\) の逆元 \(-f(\kz)\) を加えると、
 \(f(\kz)+(-f(\kz))=f(\kz)\)
 \(\fz=f(\kz)\)
となり、\(f(\kz)=\fz\) である。

\(f(xy)=f(x)f(y)\) において \(x=\ko,\:y=\ko\) とすると、
 \(f(\ko\times\ko)=f(\ko)f(\ko)\)
 \(f(\ko)=f(\ko)f(\ko)\)
両辺に \(\bs{F}\) における \(f(\ko)\) の逆元 \(-f(\ko)\) を加えると、
 \(f(\ko)+(-f(\ko))=f(\ko)f(\ko)+(-f(\ko))\)
 \(\fz=f(\ko)f(\ko)+(-f(\ko))\)
この式に現れているのは全て \(\bs{F}\) の元だから、分配則を使って、
 \(f(\ko)(f(\ko)-\fo)=\fz\)
ここで \(f(\ko)=\fz\) と仮定すると、\(f(\kz)=\fz\)かつ \(f(\ko)=\fz\) となってしまい \(f\) が単射であることと矛盾する。従って \(f(\ko)\neq\fz\) である。上式の両辺を \(f(\ko)\) で割ると、
 \(f(\ko)-\fo=\fz\)
 \(f(\ko)=\fo\)
となる。

以上を踏まえると、同型写像が減法を保存することは次のようにしてわかる。\(\bs{K}\) は加法について群なので任意の元 \(x\in\bs{K}\) について逆元 \(-x\) がある。また \(\bs{F}\) も加法についても群だから \(f(x)\) の逆元 \(-f(x)\) がある。
 \(f(-x)+f(x)=f(-x+x)=f(\kz)=\fz\)
両辺に \(-f(x)\) を足すと、
 \(f(-x)+f(x)+(-f(x))=\fz+(-f(x))\)
 \(f(-x)+\fz=\fz+(-f(x))\)
 \(f(-x)=-f(x)\)
である。\(\bs{K}\) の任意の元を \(x,\:y\) とすると、
\(\begin{eqnarray}
&&\:\:f(x-y)&=f(x+(-y))\\
&&&=f(x)+f(-y)\\
&&&=f(x)+(-f(y))\\
&&&=f(x)-f(y)\\
\end{eqnarray}\)
となって、減法は保存されている。

除法を保存することは次のようにしてわかる。\(\bs{K}\) は乗法について群なので、任意の元 \(x\:\:(\neq\kz)\) について逆元 \(x^{-1}\) がある。\(\bs{F}\) も乗法についての群だから、\(f(x)\) の逆元である \(f(x)^{-1}\) がある。\(x\neq\kz\) なら \(f(x)\neq\fz\) なので逆元が定義できる。すると、
 \(f(x^{-1})f(x)=f(x^{-1}x)=f(\ko)=\fo\)
である。この式の両辺に \(f(x)^{-1}\) をかけると、
 \(f(x^{-1})f(x)f(x)^{-1}=\fo\times f(x)^{-1}\)
 \(f(x^{-1})\times\fo=\fo\times f(x)^{-1}\)
 \(f(x^{-1})=f(x)^{-1}\)
となる。\(\bs{K}\) の任意の元を \(x,\:y\:\:(y\neq\kz)\) とすると、
\(\begin{eqnarray}
&&\:\:f\left(\dfrac{x}{y}\right)&=f(xy^{-1})\\
&&&=f(x)f(y^{-1})\\
&&&=f(x)f(y)^{-1}\\
&&&=\dfrac{f(x)}{f(y)}\\
\end{eqnarray}\)
となり、除法が保存されていることが分かる。

有理数の同型写像を考える。\(n\) を整数とすると、
\(\begin{eqnarray}
&&\:\:f(n)&=f(\:\overbrace{1+1+\cd+1}^{1をn\:個加算}\:)\\
&&&=f(1)+f(1)+\cd+f(1)\\
&&&=nf(1)\\
&&&=n\\
\end{eqnarray}\)
なので、\(f(n)=n\) である。任意の有理数 \(a\) は、2つの整数 \(n\:(\neq0),\:m\) を用いて、
 \(a=\dfrac{m}{n}\)
と表されるから、
\(\begin{eqnarray}
&&\:\:f(a)&=f\left(\dfrac{m}{n}\right)=\dfrac{f(m)}{f(n)}=\dfrac{m}{n}\\
&&&=a\\
\end{eqnarray}\)
となり、有理数は同型写像で不変である。[証明終]

同型写像と有理式の順序交換
有理式の定義:51B)

変数 \(x\) の多項式(係数は \(\bs{Q}\) の元)を分母・分子とする分数式を、\(\bs{Q}\) 上の有理式という。


\(\bs{Q}\) 上の多項式は、有理数と \(x\) の加・減・乗算で作られる式です。一方、\(\bs{Q}\) 上の有理式とは、有理数と \(x\) の除算を含む四則演算で作られる式です。


同型写像と有理式の順序交換:51C)

体 \(\bs{K}\) と 体 \(\bs{F}\) は \(\bs{Q}\) を含むものとする。\(\sg\) を \(\bs{K}\) から \(\bs{F}\) への同型写像とし、\(a\) を \(\bs{K}\) の元とする。\(f(x)\) を \(\bs{Q}\) 上の有理式とすると、

 \(\sg(f(a))=f(\sg(a))\)

である。これは多変数の有理式でも成り立つ。\(a_1,a_2,\cd,a_n\) を \(\bs{K}\) の元、\(f(x_1,x_2,\cd,x_n)\) を \(\bs{Q}\) 上の有理式とすると、

 \(\sg(f(a_1,a_2,\cd,a_n))=f(\sg(a_1),\sg(a_1),\cd,\sg(a_n))\)

である。


[証明]

\(a\in\bs{K},\:b_i\in\bs{Q},\:c_i\in\bs{Q}\) とし、1変数 \((=a)\) の2次多項式の分数式の場合を例に書くと、

\(\sg\left(\dfrac{b_2a^2+b_1a+b_0}{c_2a^2+c_1a+c_0}\right)\)
  \(=\dfrac{\sg(b_2a^2+b_1a+b_0)}{\sg(c_2a^2+c_1a+c_0)}\)
  \(=\dfrac{b_2\sg(a^2)+b_1\sg(a)+b_0}{c_2\sg(a^2)+c_1\sg(a)+c_0}\)
  \(=\dfrac{b_2\sg(a)^2+b_1\sg(a)+b_0}{c_2\sg(a)^2+c_1\sg(a)+c_0}\)

であるから、題意は成り立つ。これは \(n\)次多項式の場合でも同じである。[証明終]


「同型写像と有理式は順序交換可能」は、\(\bs{Q}\) の拡大体の上の有理式でも成り立ちます。つまり、次が成り立ちます。


\(\bs{Q}\) を含む体を \(\bs{K}\) とし、\(\bs{K}\)の拡大体を \(\bs{F}\:,\bs{F}'\) とする。\(\sg\) を \(\bs{K}\) を不変にする \(\bs{F}\) から \(\bs{F}'\) への同型写像とし、\(a\) を \(\bs{F}\) の元とする。\(f(x)\) を \(\bs{K}\) 上の有理式とすると、
 \(\sg(f(a))=f(\sg(a))\)
である。


同型写像は解を共役な解に移す
同型写像での移り先:51D)

\(\sg\) を体 \(\bs{K}\) から 体 \(\bs{F}\) への同型写像とする。\(\bs{Q}\) 上の方程式 \(f(x)=0\) の解の一つを \(\al\) とし、\(\al\) は \(\bs{K}\) の元とする。すると \(\sg(\al)\) も \(f(x)=0\) の解である。


[証明]

\(\al\) は \(f(x)=0\) の解なので \(f(\al)=0\) が成り立つ。すると、
 \(f(\sg(\al))=\sg(f(\al))=\sg(0)=0\)
となり、\(\sg(\al)\) も \(f(x)=0\) の解である。[証明終]


同じ方程式の解同士を「共役な解」「共役である」と言います。この定理により、同型写像は解を共役な解に移すこと分かります。

同型写像は解を入れ替える
同型写像による解の置換:51E)

\(\sg\) を体 \(\bs{K}\) から 体 \(\bs{F}\) への同型写像とし、\(f(x)\) を \(\bs{Q}\) 上の \(n\)次既約多項式とする。方程式 \(f(x)=0\) の \(n\)個の解を \(\al_1,\al_2,\cd,\al_n\) とし、これらが全て \(\bs{K}\) に含まれるとする。

すると \(\sg(\al_1),\sg(\al_2),\cd,\sg(\al_n)\) は、\(\al_1,\al_2,\cd,\al_n\) を入れ替えたものである。


[証明]

\(f(x)\) は既約多項式なので、方程式 \(f(x)=0\) は \(n\)個の解をもち、それらは全て異なる(31G)。同型写像は解を共役な解に移す(51D)ので、\(\sg(\al_i)\) も \(f(x)=0\) の解である。\(\sg\) は同型写像なので全単射であり、\(i\neq j\) なら \(\sg(\al_i)\neq\sg(\al_j)\) である。従って \(\sg(\al_1),\sg(\al_2),\cd,\sg(\al_n)\) は、\(\al_1,\al_2,\cd,\al_n\) を入れ替えたものである。[証明終]


同型写像を定義してその性質を述べてきましたが、あたかも「同型写像はあるのが当然」のような話でした。しかし、同型写像があったとしたらこういう性質をもつというのが正しく、同型写像が必ずあるとは証明していません。

同型写像の存在を示すには、第1章でやったように、\(\bs{Q}(\sqrt{2})\)において
 \(\sg(\sqrt{2})=-\sqrt{2}\)
という写像を定義すると、体のすべての元について \(\sg\) は同型写像の定義を満たす、というような証明が必要です。それが次です。

単拡大体の同型写像の存在
同型写像の存在:51F)

\(f(x)\) を \(\bs{Q}\) 上の \(n\)次既約多項式とする。\(\al,\:\beta\) を方程式 \(f(x)=0\) の異なる解とする。

すると \(\sg(\al)=\beta\) を満たす \(\bs{Q}(\al)\) から \(\bs{Q}(\beta)\) への唯一の同型写像 \(\sg\) が存在する。


[証明]

\(\bs{Q}(\al)\) の任意の元を \(a\)、\(\bs{Q}(\beta)\) の任意の元を \(b\) とする。単拡大体の基底の定理(33F)により、\(a,\:b\) は、
\(a=a_{n-1}\al^{n-1}+\:\cd\:+a_2\al^2+a_1\al+a_0\:\:(a_i\in\bs{Q})\)
\(b=b_{n-1}\beta^{n-1}+\:\cd\:+b_2\beta^2+b_1\beta+b_0\:\:(b_i\in\bs{Q})\)
の形に一意に表される。ここで \(\bs{Q}(\al)\) から \(\bs{Q}(\beta)\) への同型写像 \(\sg\) を、
\(\begin{eqnarray}
&&\:\:\sg\:: &a_{n-1}\al^{n-1}+\:\cd\:+a_2\al^2+a_1\al+a_0\\
&&&\longmapsto\:a_{n-1}\beta^{n-1}+\:\cd\:+a_2\beta^2+a_1\beta+a_0\\
\end{eqnarray}\)
と定義する。\(a=\al\) の場合は、\(a_1=1,\:a_i=0\:\:(i=0,\:2\leq i\leq n-1)\) だから、\(\sg(\al)=\beta\) である。以下、この \(\sg\) が同型写像であることを証明する。定義により(51A)同型写像であることは加法と乗法を保存することを言えばよい。

\(\bs{Q}(\al)\) の任意の2つの元を \(s,\:t\) とし、
\(s=s_{n-1}\al^{n-1}+\:\cd\:+s_2\al^2+s_1\al+s_0\)
\(t=t_{n-1}\al^{n-1}+\:\cd\:+t_2\al^2+t_1\al+t_0\)
とする。また多項式 \(g(x)\) と \(h(x)\) を、
\(g(x)=s_{n-1}x^{n-1}+\:\cd\:+s_2x^2+s_1x+s_0\)
\(h(x)=t_{n-1}x^{n-1}+\:\cd\:+t_2x^2+t_1x+t_0\)
と定義する。\(s_i,t_i\in\bs{Q}\) であり、\(s=g(\al),\:t=h(\al)\) である。また \(\sg\) の定義により \(\sg(s)=g(\beta),\:\sg(t)=h(\beta)\) である。

\(p(x)=g(x)+h(x)\) とおくと、
 \(p(\al)=g(\al)+h(\al)=s+t\)
である。また \(\sg\)の定義により、
 \(\sg(p(\al))=p(\beta)\)
となる。従って、
\(\begin{eqnarray}
&&\:\:\sg(s+t)&=\sg(p(\al))\\
&&&=p(\beta)\\
&&&=g(\beta)+h(\beta)\\
&&&=\sg(s)+\sg(t)\\
\end{eqnarray}\)
となり、加法は保存される。

\(g(x)h(x)\) を \(f(x)\) で割ったときの商を \(q(x)\)、余りを \(r(x)\) とすると、
 \(g(x)h(x)=q(x)f(x)+r(x)\)
である。この式に \(x=\al,\:x=\beta\) のそれぞれを代入すると、\(f(\al)=0,\:f(\beta)=0\) なので、
 \(g(\al)h(\al)=r(\al)\)
 \(g(\beta)h(\beta)=r(\beta)\)
となる。すると、
\(\begin{eqnarray}
&&\:\:\sg(st)&=\sg(g(\al)h(\al))\\
&&&=\sg(r(\al))=r(\sg(\al))\\
&&&=r(\beta)\\
\end{eqnarray}\)

\(\begin{eqnarray}
&&\:\:\sg(s)\sg(t)&=\sg(g(\al))\sg(h(\al))\\
&&&=g(\sg(\al))h(\sg(\al))\\
&&&=g(\beta)h(\beta)\\
&&&=r(\beta)\\
\end{eqnarray}\)
であり、
 \(\sg(st)=\sg(s)\sg(t)\)
となって乗法も保存されている。従って \(\sg\) は同型写像である。

逆に、\(\bs{Q}(\al)\) に作用する同型写像 \(\tau\) があったとする。同型写像は \(\al\) を共役な元に移すので、その移り先の元を \(\beta\)、つまり \(\tau(\al)=\beta\) とする。\(\bs{Q}(\al)\) の任意の元 \(a\) に \(\tau\) を作用させると、
\(\begin{eqnarray}
&&\:\:\tau(a)&=\tau(a_{n-1}\al^{n-1}+\:\cd\:+a_2\al^2+a_1\al+a_0)\\
&&&=a_{n-1}\tau(\al^{n-1})+\:\cd\:+a_2\tau(\al^2)+a_1\tau(\al)+a_0\\
&&&=a_{n-1}\tau(\al)^{n-1}+\:\cd\:+a_2\tau(\al)^2+a_1\tau(\al)+a_0\\
&&&=a_{n-1}\beta^{n-1}+\:\cd\:+a_2\beta^2+a_1\beta+a_0\\
\end{eqnarray}\)
となるので、同型写像はこの式を満たさなければならない。従って、上で定義した \(\sg\) が \(\bs{Q}(\al)\) から \(\bs{Q}(\beta)\) の唯一の同型写像である。[証明終]


同型写像の存在51F)を一般化すると、次のことが言えます。

単拡大体の同型写像は \(n\) 個
単拡大体の同型写像:51G)

\(f(x)\) を \(\bs{Q}\) 上の \(n\)次既約多項式とする。\(f(x)=0\) の全ての解を \(\al_1=\al,\:\al_2,\:\cd\:,\al_n\) とする。このとき \(\bs{Q}(\al)\) に作用する同型写像は \(n\)個あり、それらは、
 \(\sg_i(\al)=\al_i\) \((1\leq i\leq n)\)
で定められ、\(\sg_i\) は \(\bs{Q}(\al)\) から \(\bs{Q}(\al_i)\) への同型写像となる。



同型写像を別の視点で考えます。\(\bs{Q}\:\subset\:\bs{F}\:\subset\:\bs{K}\) といった体の拡大列があったとき、\(\bs{F}\) の同型写像と \(\bs{K}\) の同型写像には密接な関係があります。それが次の同型写像の延長の定理です。単拡大定理32B)により、\(\bs{F}=\bs{Q}(\al)\)、\(\bs{K}=\bs{Q}(\al,\beta)\) としてよいので、その形を使います。

同型写像の延長
同型写像の延長:51H)

\(\bs{Q}\) 上の \(n\)次既約多項式を \(f(x)\) とし、方程式 \(f(x)=0\) の解の一つを \(\al\) とする。

\(\bs{\bs{Q}(\al)}\) 上の \(m\)次既約多項式を \(g(x)\) とし、方程式 \(g(x)=0\) の解の一つを \(\beta\) とする。また、\(\bs{Q}(\al)\) の同型写像の一つを \(\tau\) とする。

このとき、\(\tau\) は \(\bs{Q}(\al,\beta)\) の同型写像 \(\sg_j\) に延長できる。延長とは、\(\sg_j\) の作用を \(\bs{Q}(\al)\) に限定した写像の作用が \(\tau\) と一致することを言う。\(\tau\) を延長した同型写像 \(\sg_j\) は \(m\)個ある(\(0\leq j < m\))。


[証明]

\(\bs{Q}(\al)\) 上の \(m\)次既約多項式 \(g(x)\) を、
 \(g(x)=x^m+a_1x^{m-1}+\cd+a_m\:\:(a_j\in\bs{Q}(\al))\)
とする。\(\beta\) は \(g(x)=0\) の解だから
 \(g(\beta)=\beta^m+a_1\beta^{m-1}+\cd+a_m=0\)
である。また、多項式 \(\tau(g(x))\) を、
 \(\tau(g(x))=x^m+\tau(a_1)x^{m-1}+\cd+\tau(a_{m-1})x+\tau(a_m)\)
と定義し、方程式
 \(\tau(g(x))=0\)
の解を \(t_j\:\:(0\leq j < m)\)とする。つまり \(\tau(g(t_j))=0\) である。

\(\bs{Q}(\al,\beta)\) は \(\bs{Q}(\al)\) 上の線形空間であり、単拡大体の基底の定理(33F)により、その基底を \(\{1,\:\beta,\:\beta^2,\:\cd\:\beta^{m-1}\}\) にとれるから、\(\bs{Q}(\al,\beta)\) の任意の元 \(k\) は、

\(k=b_0+b_1\beta+b_2\beta^2\:+\cd+\:b_{n-1}\beta^{m-1}\:\:(b_j\in\bs{Q}(\al))\)

と表せる。そこで、\(\bs{Q}(\al,\beta)\) の元に作用する写像 \(\sg_j\) を

\(\sg_j(k)=\tau(b_0)+\tau(b_1)t_j+\tau(b_2)t_j^2+\cd+\tau(b_{m-1})t_j^{m-1}\)

と定義する。この定義における \(\sg_j\) は \(\bs{Q}(\al,\beta)\) の同型写像になる。同型写像になることは体の加算と乗算で示せればよい(51A)。\(\bs{Q}(\al,\beta)\) の2つの元を、
 \(p=c_0+c_1\beta+c_2\beta^2\:+\cd+\:c_{m-1}\beta^{m-1}\:\:(c_j\in\:\bs{Q}(\al)\:)\)
 \(q=d_0+d_1\beta+d_2\beta^2\:+\cd+\:d_{m-1}\beta^{m-1}\:\:(d_j\in\:\bs{Q}(\al)\:)\)
とし、2つの多項式を、
 \(p(x)=c_0+c_1x+c_2x^2\:+\cd+\:c_{m-1}x^{m-1}\)
 \(q(x)=d_0+d_1x+d_2x^2\:+\cd+\:d_{m-1}x^{m-1}\)
と定義する。加算で同型写像になるのは明白なので、乗算で同型写像になることを示す。

\(p(x)q(x)\) を \(g(x)\) で割ったときの商を \(t(x)\)、余りを \(r(x)\) とすると、
\(p(x)q(x)=t(x)g(x)+r(x)\)
\(r(x)\)\(\overset{\text{ }}{=}\)\(s_0(c_j,d_j)+s_1(c_j,d_j)x+s_2(c_j,d_j)x^2+\cd+s_{m-1}(c_j,d_j)x^{m-1}\)
と書ける。ここで \(s_j()\) は \(c_j,\:d_j\:\:(0\leq j\leq m-1)\)の有理式である。\(()\) の中を全部書くと \(s_j(c_0,c_1,\cd,c_{m-1},d_0,d_1,\cd,d_{m-1})\) という \(2m\)個の \(\bs{Q}(\al)\) の元の有理式を表わしていて、それを簡略表記している。

すると \(g(\beta)=0\) だから、
\(pq\)\(\overset{\text{ }}{=}\)\(p(\beta)q(\beta)\)
\(\overset{\text{ }}{=}\)\(r(\beta)\)
\(\overset{\text{ }}{=}\)\(s_0(c_j,d_j)+\)\(s_1(c_j,d_j)\beta+\)\(s_2(c_j,d_j)\beta^2\:+\)\(\cd+\)\(s_{m-1}(c_j,d_j)\beta^{m-1}\)
である。そうすると、\(\sg_j(pq)\) は \(\sg_j\) の定義により、
\(\sg_j(pq)\)\(\overset{\text{ }}{=}\)\(\tau(s_0(c_j,d_j))+\)\(\tau(s_1(c_j,d_j))t_j+\)\(\tau(s_2(c_j,d_j))t_j^2+\)\(\cd+\)\(\tau(s_{m-1}(c_j,d_j))t_j^{m-1}\)
となる。

\(\tau\) は \(\bs{Q}(\al)\) の同型写像だから、\(\bs{Q}(\al)\) の元の有理式である \(s_j(c_j,d_j)\) に作用させると、同型写像と有理式の順序交換の定理(51C)により、
 \(\tau(s_j(c_j,d_j))=s_j(\tau(c_j),\tau(d_j))\)
となる。従って、
\(\sg_j(pq)\)\(\overset{\text{ }}{=}\)\(s_0(\tau(c_j),\tau(d_j))+\)\(s_1(\tau(c_j),\tau(d_j))t_j\:+\)\(s_2(\tau(c_j),\tau(d_j))t_j^2+\)\(\cd+\)\(s_{m-1}(\tau(c_j),\tau(d_j))t_j^{m-1}\)
である。

\(p(x)\) の係数 \(c_j\) を \(\tau(c_j)\) で置き換え、\(q(x)\) の係数 \(d_j\) を \(\tau(d_j)\) で置き換えた2つの多項式を、
 \(\tau(p(x))=\tau(c_0)+\tau(c_1)x+\tau(c_2)x^2+\cd+\tau(c_{m-1})x^{m-1}\)
 \(\tau(q(x))=\tau(d_0)+\tau(d_1)x+\tau(d_2)x^2+\cd+\tau(d_{m-1})x^{m-1}\)
とする。

\(\tau(p(x))\tau(q(x))\)を\(\tau(g(x))\)で割ったときの商を\(\tau(t(x))\)、余りを\(\tau(r(x))\)とする。つまり、
 \(\tau(p(x))\tau(q(x))=\tau(g(x))\tau(t(x))+\tau(r(x))\)
である。\(c_j\) と \(d_j\) の有理式、\(s_j(c_j,d_j)\) を使って \(\tau(r(x))\) を表すと、
\(\tau(r(x))\)\(\overset{\text{ }}{=}\)\(s_0(\tau(c_j),\tau(d_j))+\)\(s_1(\tau(c_j),\tau(d_j))x+\)\(s_2(\tau(c_j),\tau(d_j))x^2\:+\)\(\cd+\)\(s_{m-1}(\tau(c_j),\tau(d_j))x^{m-1}\)
となる。\(\sg_j\) の定義により、
\(\sg_j(p)\)\(\overset{\text{ }}{=}\)\(\tau(c_0)+\)\(\tau(c_1)t_j+\)\(\tau(c_2)t_j^2+\)\(\cd+\)\(\tau(c_{m-1})t_j^{m-1}\)
\(\overset{\text{ }}{=}\)\(\tau(p(t_j))\)
\(\sg_j(q)\)\(\overset{\text{ }}{=}\)\(\tau(d_0)+\)\(\tau(d_1)t_j+\)\(\tau(d_2)t_j^2+\)\(\cd+\)\(\tau(d_{m-1})t_j^{m-1}\)
\(\overset{\text{ }}{=}\)\(\tau(q(t_j))\)
である。従って、
\(\sg_j(p)\sg_j(q)\)
 \(\overset{\text{ }}{=}\)\(\tau(p(t_j))\tau(q(t_j))\)
\(\overset{\text{ }}{=}\)\(\tau(f(t_j))\tau(t(t_j))+\tau(r(t_j))\)
\(\overset{\text{ }}{=}\)\(\tau(r(t_j))\)
\(\overset{\text{ }}{=}\)\(s_0(\tau(c_j),\tau(d_j))+\)\(s_1(\tau(c_j),\tau(d_j))t_j+\)\(s_2(\tau(c_j),\tau(d_j))t_j^2+\)\(\cd+\)\(s_{n-1}(\tau(c_j),\tau(d_j))t_j^{m-1}\)
\(\overset{\text{ }}{=}\)\(\sg_j(pq)\)
となり、\(\sg_j\) は同型写像の定義を満たしている。

また、\(\bs{Q}(\al,\beta)\) の任意の元 \(k\) を、
 \(k=b_0+b_1\beta+b_2\beta^2\:+\cd+\:b_{n-1}\beta^{m-1}\:\:(b_j\in\bs{Q}(\al))\)
と表したとき、\(k\) が \(\bs{Q}(\al)\) の元だとすると \(k=b_0\:\:(b_0\in\bs{Q}(\al))\)、\(b_j=0\:\:(1\leq j < m)\) なので、
 \(\sg_j(k)=\tau(b_0)=\tau(k)\)
となり、\(\sg_j\) の \(\bs{Q}(\al)\) の元に対する作用は \(\tau\) と一致する。従って、
\(\sg_j\)は、その作用を \(\bs{Q}(\al)\) に限定したとき \(\tau\) と一致する \(\bs{Q}(\al,\beta)\) の同型写像
であり、\(\bs{Q}(\al)\) の同型写像 \(\tau\) の延長である。

\(\sg_j\) の定義式、
\(\sg_j(k)=\tau(b_0)+\tau(b_1)t_j+\tau(b_2)t_j^2+\cd+\tau(b_{m-1})t_j^{m-1}\)
における \(t_j\) は、 \(\bs{Q}(\al)\) 上の \(m\)次方程式、
\(x^m+\tau(a_1)x^{m-1}+\cd+\tau(a_m)=0\)
の解であった。従って \(t_j\) の選択肢は \(m\) 個あり、\(\bs{Q}(\al)\) の同型写像 \(\tau\) の延長は \(m\) 個ある。

一方、\(\al\) は \(\bs{Q}\) 上の \(n\)次既約多項式 \(f(x)\) の解の一つだから、\(\bs{Q}(\al)\) の同型写像 \(\tau\) は \(n\)個ある。これを \(\tau_i\:\:(0\leq i < n)\) と書くと、それぞれの \(\tau_i\) に対して同型写像の拡張 \(\sg_{ij}\:\:(0\leq i < n,\:0\leq j < m)\) がある。従って \(\bs{Q}(\al,\beta)\) の 同型写像 \(\sg_{ij}\) は \(nm\)個ある。[証明終]


5.2 ガロア拡大とガロア群


ガロア拡大
ガロア拡大:52A)

ガロア拡大は次のように定義される。この2つの定義は同値である。

① 最小分解体定義)体 \(\bs{F}\) 上の多項式を \(f(x)\) とし、方程式 \(f(x)=0\) の最小分解体を \(\bs{L}\) とするとき、\(\bs{L}/\bs{F}\) をガロア拡大という。

② 自己同型定義)体 \(\bs{F}\) の代数拡大体 \(\bs{K}\) があったとき、\(\bs{F}\) の元を不動にする \(\bs{K}\) の同型写像がすべて自己同型写像になるとき、\(\bs{K}/\bs{F}\) をガロア拡大という。

\(\bs{K}/\bs{F}\) がガロア拡大のとき、\(\bs{\bs{F}}\) を不変にする \(\bs{K}\) の自己同型写像の集合は群になる。これをガロア群といい、\(\mr{Gal}(\bs{K}/\bs{F})\) で表す。


[① \(\bs{\Rightarrow}\) ②の証明]

単拡大定理32B)により、\(\bs{L}\) は、\(\bs{L}\) の元 \(\theta\) を用いて \(\bs{L}=\bs{F}(\theta)\) と表すことができる。\(\theta\) の \(\bs{F}\) 上の最小多項式を \(g(x)\) とし、その次数を \(m\) とする。最小多項式は既約多項式の定理(31I)により、\(g(x)\) は既約多項式である。また、既約多項式の定理331G)により、方程式 \(g(x)=0\) の \(m\)個の解は全て異なっている。その解の一つは \(\theta\) なので、\(m\)個の解を、

 \(\theta=\theta_1,\:\theta_2,\:\cd,\:\theta_m\)

とする。\(\theta_i\:\:(2\leq i\leq m)\) が \(\bs{L}\) の元かどうかは(この段階では)分からない。

\(\bs{F}\) の元を不変にする \(\bs{L}\) 上の同型写像の一つを \(\sg\) とする。\(\sg\) は \(\bs{F}\) の元を不変にするから、\(\bs{L}=\bs{F}(\theta)\) においては \(\sg(\theta)\) を決めることによって \(\sg\) が定義される。その同型写像は、方程式の解を共役な解に移す(51D)。そこで、\(m\)個の同型写像を、
 \(\sg_i(\theta)=\theta_i\)
と定義する(\(\sg_1=e\))。

一方、\(\bs{L}\) は \(\bs{F}\) 上の方程式 \(f(x)=0\) の最小分解体であった。\(f(x)=0\) の解を、
 \(\al_1,\:\al_2,\:\cd,\:\al_n\)
の \(n\)個とする。そうすると、
 \(\bs{L}=\bs{F}(\al_1,\:\al_2,\:\cd,\:\al_n)\)
である。\(\bs{L}\) の任意の元 は、\(\al_1,\:\al_2,\:\cd,\:\al_n\) の有理式(係数は \(\bs{F}\) の元)で表せる。\(\theta\) を有理式で表す式を、\(n\)変数の有理式 \(h(x_1,x_2,\cd,x_n)\) を使って、
 \(\theta=h(\al_1,\:\al_2,\:\cd,\:\al_n)\)
と表したとする。\(h(x_i)\)は、\(n\)変数の多項式(係数は \(\bs{F}\) の元)を \(s(x_i)\) と \(t(x_i)\) として、
 \(h(\al_1,\:\al_2,\:\cd,\:\al_n)=\dfrac{s(\al_1,\:\al_2,\:\cd,\:\al_n)}{t(\al_1,\:\al_2,\:\cd,\:\al_n)}\)
である。

\(\theta\) に同型写像 \(\sg_i\) を作用させる。\(\bs{F}\) 係数の有理式と \(\bs{F}\) を不変にする同型写像の演算順序は交換可能(51C)だから、
\(\begin{eqnarray}
&&\:\:\sg_i(\theta)&=\sg_i(h(\al_1,\:\al_2,\:\cd,\:\al_n))\\
&&&=h(\sg_i(\al_1),\:\sg_i(\al_2),\:\cd,\:\sg_i(\al_n))\\
\end{eqnarray}\)
となる。同型写像は方程式の解を共役な解に移す(51D)から、\(\sg_i(\al_1),\:\sg_i(\al_2),\:\cd,\:\sg_i(\al_n)\) は \(\al_1,\:\al_2,\:\cd,\:\al_n\) を入れ替えたものである(51E)。つまり \(\sg_i(\theta)\) は \(\al_1,\:\al_2,\:\cd,\:\al_n\) の有理式で表現される。従って、
 \(\sg_i(\theta)\:\in\:\bs{L}\)
である。\(\sg_i(\theta)=\theta_i\) と定義したので、
 \(\theta_i\:\in\:\bs{L}\)
である。つまり \(m\)個の同型写像 \(\sg_i\:\:(1\leq i\leq m)\) は全て \(\bs{L}\) の自己同型写像である。

[② \(\bs{\Rightarrow}\) ①の証明]

単拡大定理32B)により、\(\bs{K}\) は、\(\bs{K}\) の元 \(\theta\) を用いて \(\bs{K}=\bs{F}(\theta)\) と表すことができる。\(\theta\) の \(\bs{F}\) 上の最小多項式を \(f(x)\) とし、その次数を \(m\) とする。最小多項式は既約多項式の定理(31I)により、\(f(x)\) は既約多項式である。また既約多項式の定理331G)により、方程式 \(f(x)=0\) の \(m\)個の解は全て異なっている。解の一つは \(\theta\) なので、\(m\)個の解を、
 \(\theta=\theta_1,\:\theta_2,\:\cd,\:\theta_m\)
とする。

\(\bs{F}\) の元を不変にする \(\bs{K}\) 上の同型写像の一つを \(\sg\) とする。\(\sg\) は \(\bs{F}\) の元を不変にするから、\(\bs{L}=\bs{F}(\theta)\) においては \(\sg(\theta)\) を決めることによって \(\sg\) が定義される。その同型写像は、\(\bs{F}\) 上の方程式の解を共役な解に移す(51D)。そこで、\(m\)個の同型写像を、
 \(\sg_i(\theta)=\theta_i\)
と定義する。\(\bs{F}\) の元を不変にする \(\bs{K}\) 上の同型写像は自己同型写像なので、\(\sg_i(\theta)=\theta_i\) は全て \(\bs{K}\) の元である。従って \(\bs{K}\) は \(\bs{F}\) 上の既約多項式 \(f(x)\) の解 \(\theta_i\) を用いて、

\(\begin{eqnarray}
&&\:\:\bs{K}&=\bs{F}(\theta)\\
&&&=\bs{F}(\theta_1,\:\theta_2,\:\cd,\:\theta_m)\\
\end{eqnarray}\)

と表される。\(\bs{K}\) は \(\bs{F}\) 上の既約多項式の最小分解体である。[証明終]


① の定義は、方程式の解のありようを議論するガロア理論にとっては "ノーマルな" 定義のように見えます。しかし ② のように方程式という言葉を全く使わない定義もメリットがあります。たとえば「次数が違う2つの方程式の解によるガロア拡大が同じ」ということは、いくらでもありうるからです。

また、ガロア拡大は次のような定義もできます。

③ (正規拡大定義)体 \(\bs{F}\) の代数拡大体 \(\bs{K}\) があったとき、\(\bs{K}\) の任意の元の \(\bs{F}\) 上の最小多項式を \(f(x)\) とする。\(f(x)=0\) のすべての解が \(\bs{K}\) の元のとき、\(\bs{K}\) を \(\bs{F}\) の正規拡大と言う。ガロア拡大とは正規拡大のことである。

方程式という言葉は使っていますが、拡大体から始まる定義です。言い換えると、\(\bs{K}\) がガロア拡大体のとき \(\bs{K}\) の任意の元に共役な元は \(\bs{K}\) に含まれるということです。

このように、互いに同値である多種の定義ができることがガロア理論の分かりにくいところですが、逆に「それだけ豊かな数学的内容を含んだ理論」とも言えるでしょう。

最小分解体の次数=ガロア群の位数
次数と位数の同一性:52B)

\(\bs{Q}\) 上の方程式 \(f(x)=0\) の最小分解体を \(\bs{L}\)、ガロア群を \(G\) とするとき、\([\:\bs{L}\::\:\bs{Q}\:]=|G|\) である。


[証明]

単拡大定理32B)により、\(\bs{L}\) は、\(\bs{L}\) の元 \(\theta\) を用いて \(\bs{L}=\bs{Q}(\theta)\) と表すことができる。\(\theta\) の \(\bs{Q}\) 上の最小多項式を \(g(x)\) とし、その次数を \(m\) とする。最小多項式は既約多項式の定理(31I)により、\(g(x)\) は既約多項式である。また、既約多項式の定理331G)により、方程式 \(g(x)=0\) の \(m\)個の解は全て異なっている。解の一つは \(\theta\) なので、\(m\)個の解を、
 \(\theta=\theta_1,\:\theta_2,\:\cd,\:\theta_m\)
とする。ここで、\(\theta_i\:\:(2\leq i\leq m)\) が \(\bs{L}\) の元かどうかは(この段階では)分からない。

\(\bs{L}\) 上の同型写像の一つを \(\sg\) とする。\(\sg\) は \(\bs{Q}\) の元を不変にするから、\(\bs{L}=\bs{Q}(\theta)\) においては \(\sg(\theta)\) を決めることによって \(\sg\) が定義される。その同型写像は、方程式の解を共役な解に移す(51D)。そこで、\(m\)個の同型写像を、
 \(\sg_i(\theta)=\theta_i\)
と定義する(\(\sg_1=e\))。単拡大体 \(\bs{Q}(\theta)\) に作用する同型写像は \(m\)個だから(51G)、これが同型写像のすべてである。

一方、\(\bs{L}\) は \(\bs{Q}\) 上の方程式 \(f(x)=0\) の最小分解体であった。\(f(x)=0\) の解を、
 \(\al_1,\:\al_2,\:\cd,\:\al_n\)
の \(n\)個とする。そうすると、
 \(\bs{L}=\bs{Q}(\al_1,\:\al_2,\:\cd,\:\al_n)\)
である。\(\bs{L}\) の任意の元 は、\(\al_1,\:\al_2,\:\cd,\:\al_n\) の有理式で表せる。\(\theta\) を有理式で表す式を、\(n\)変数の有理式 \(h(x_1,x_2,\cd,x_n)\) を使って、
 \(\theta=h(\al_1,\:\al_2,\:\cd,\:\al_n)\)
と表したとする。\(h(x_i)\)は、\(n\)変数の多項式(係数は有理数)を \(s(x_i)\) と \(t(x_i)\) として、
 \(h(\al_1,\:\al_2,\:\cd,\:\al_n)=\dfrac{s(\al_1,\:\al_2,\:\cd,\:\al_n)}{t(\al_1,\:\al_2,\:\cd,\:\al_n)}\)
である。

\(\theta\) に同型写像 \(\sg_i\) を作用させると、有理式と同型写像の演算順序は交換可能(51C)だから、
\(\begin{eqnarray}
&&\:\:\sg_i(\theta)&=\sg_i(h(\al_1,\:\al_2,\:\cd,\:\al_n))\\
&&&=h(\sg_i(\al_1),\:\sg_i(\al_2),\:\cd,\:\sg_i(\al_n))\\
\end{eqnarray}\)
となる。同型写像は方程式の解を共役な解に移すから(51D)、\(\sg_i(\al_1),\:\sg_i(\al_2),\:\cd,\:\sg_i(\al_n)\) は \(\al_1,\:\al_2,\:\cd,\:\al_n\) を入れ替えたものである(51E)。つまり \(\sg_i(\theta)\) は \(\al_1,\:\al_2,\:\cd,\:\al_n\) の有理式で表現される。従って、
 \(\sg_i(\theta)\:\in\:\bs{L}\)
である。\(\sg_i(\theta)=\theta_i\) と定義したので、
 \(\theta_i\:\in\:\bs{L}\)
である。つまり \(m\)個の同型写像 \(\sg_i\:\:(1\leq i\leq m)\) は全て \(\bs{L}\) の自己同型写像である。以上により、
 \(\mr{Gal}(\bs{L}/\bs{Q})=\{\sg_1,\:\sg_2,\:\cd,\:\sg_m\}\)
であり、\(|G|=m\) である。

\(\theta\) の \(\bs{Q}\) 上の最小多項式(=既約多項式)の次数が \(m\) だから、単拡大体の基底の定理(33F)によって、最小分解体 \(\bs{L}=\bs{Q}(\theta)\) は \(\bs{Q}\) の \(m\)次拡大体であり、
 \([\:\bs{L}\::\:\bs{Q}\:]=|G|\)
である。[証明終]


この定理では \(\bs{Q}\) としましたが、任意の代数拡大体 \(\bs{F}\) としても成り立ちます。また、最小分解体はガロア拡大体です。従って、最も一般的に言うと次のようになります。


\(\bs{F}\) を代数拡大体とし、\(\bs{F}\) のガロア拡大を \(\bs{L}\) とする。\(\bs{L}\) のガロア群の位数は \(\bs{F}\) から \(\bs{L}\) への拡大次数に等しい。つまり、
 \([\:\bs{L}\::\:\bs{F}\:]=|\mr{Gal}(\bs{L}/\bs{F})|\)
である。


中間体
中間体からのガロア拡大:52C)

\(\bs{K}\) を \(\bs{F}\) のガロア拡大体とし、\(\bs{M}\) を \(\bs{F}\subset\bs{M}\subset\bs{K}\) である任意の体(=中間体)とするとき、\(\bs{K}\) は \(\bs{M}\) のガロア拡大体でもある。


[証明]

最小分解体定義による

\(\bs{K}\) が \(\bs{F}\) 上の方程式 \(f(x)=0\) の最小分解体であるとする。この方程式の解を \(\al_1,\:\al_2,\:\cd\:\al_n\) とすると、\(\bs{K}=\bs{F}(\al_1,\:\al_2,\:\cd\:\al_n)\) である。\(\bs{F}\subset\bs{M}\subset\bs{L}\) なので、
 \(\bs{F}(\al_1,\:\cd\:\al_n)\:\subset\:\bs{M}(\al_1,\:\cd\:\al_n)\:\subset\:\bs{K}(\al_1,\:\cd\:\al_n)=\bs{K}\)
となるが、すなわち、
 \(\bs{F}\:\subset\:\bs{M}(\al_1,\:\al_2,\:\cd\:\al_n)\:\subset\:\bs{K}\)
であり、\(\bs{K}=\bs{M}(\al_1,\:\al_2,\:\cd\:\al_n)\) である。\(f(x)=0\) は \(\bs{M}\) 上の方程式でもあるので、\(\bs{K}\) は \(\bs{M}\) 上の方程式の最小分解体であり、\(\bs{M}\) のガロア拡大体である。

自己同型定義による

\(\bs{L}\) の同型写像のうち、\(\bs{M}\) の元を固定する任意の同型写像を \(\sg\) とする。そうすると \(\sg\) は \(\bs{M}\) の部分集合である \(\bs{F}\) の元も固定する。\(\bs{L}\) は \(\bs{F}\) のガロア拡大体なので、\(\bs{F}\) の元を固定する \(\bs{L}\) の同型写像は自己同型写像である。従って \(\sg\) も自己同型写像であり、\(\bs{L}\) は \(\bs{M}\) のガロア拡大体である。[証明終]


\(\bs{F}\subset\bs{M}\subset\bs{K}\) という体の拡大列があったとき、\(\bs{F}\subset\bs{K}\) がガロア拡大だと上の定理(52C)によって \(\bs{M}\subset\bs{K}\) もガロア拡大です。しかし、\(\bs{F}\subset\bs{M}\) がガロア拡大になるとは限りません。\(\bs{F}\subset\bs{M}\) がガロア拡大になるためには条件が必要で、その条件が満たされば、\(\bs{F}\subset\bs{M}\subset\bs{K}\) は「ガロア拡大の連鎖」になり、そのことが方程式の可解性と結びつきます。それが次の節の大きな主題です。


5.3 ガロア対応


固定体と固定群
固定体と固定群:53A)

体 \(\bs{F}\) 上の方程式の最小分解体(=ガロア拡大体)を \(\bs{K}\) とし、ガロア群を \(G\) とする。\(G\) の部分群 \(H\) によって不変な \(\bs{K}\) の元の集合 \(\bs{M}\) は体になる。これを \(\bs{K}\) における \(H\) の固定体といい、\(\bs{K}(H)\) で表す(または \(\bs{K}^H\))。

また \(\bs{K}\) の中間体 \(\bs{M}\) のすべての元を不変にする \(G\) の部分集合 \(H\) は群になる。これを \(G\) における \(\bs{M}\) の固定群と呼び、\(G(\bs{M})\) で表す(または \(G^M\))。


[証明]

固定体と固定群の定義において、

① \(G\) の部分群 \(H\) によって不変な \(\bs{K}\) の元の集合 \(\bs{M}\) は体になる
② \(\bs{K}\) の中間体 \(\bs{M}\) のすべての元を不変にする \(G\) の部分集合 \(H\) は群になる

の2点を証明する。

 ① の証明 

\(\bs{M}\) が体であることを証明するには、四則演算で閉じていることを言えばよい(1.2 体)。\(\bs{M}\) の任意の2つの元を \(x,\:y\) とし、\(H\) の任意の元を \(\sg\) とする。\(x,\:y\) は \(\bs{K}\) の元でもあるから、
 \(x+y\in\bs{K}\)
である。\(H\) の元 \(\sg\) は \(G\) の元でもあるから \(\sg(x+y)\) が定義できる。\(x,\:y\) は \(\bs{M}\) の元だから、\(H\) の元である \(\sg\) を作用させても不変であり、
 \(\sg(x)=x\)
 \(\sg(y)=y\)
である。すると、
 \(\sg(x+y)=\sg(x)+\sg(y)=x+y\)
となって、\(x+y\) は \(\sg\) によって不変であり、
 \(x+y\in\bs{M}\)
である。以上のことが加減乗除のすべてで成り立つことは明白だから、\(\bs{M}\) は四則演算で閉じていて、体である。

 ② の証明 

\(\bs{M}\) の任意の元を \(x\)、\(H\) の2つの元を \(\sg,\:\tau\) とする。
 \(\sg(x)=x\)
 \(\tau(x)=x\)
である。すると、
 \(\sg\tau(x)=\sg(\tau(x))=\sg(x)=x\)
となり、\(\sg\tau\in H\) となって、\(H\) の元は群演算で閉じている。

また \(H\) の元はもともと \(G\) の元なので、結合法則も成り立つ。\(G\) の単位元を \(e\) とすると、\(e(x)=x\) なので \(e\in H\) である。

さらに \(\sg\) は \(G\) の元なので、\(G\) の中に \(\sg^{-1}\) が存在する。すると、\(\sg(x)=x\) の両辺に左から \(\sg^{-1}\) をかけると、
 \(\sg^{-1}\sg(x)=\sg^{-1}(x)\)
 \(x=\sg^{-1}(x)\)
となり、
 \(\sg^{-1}\in H\)
である。\(H\) は演算で閉じていて、結合法則が成り立ち、単位元と逆元が存在するので、群の定義22A)を満たしている。[証明終]


以上の固定体と固定群の概念を用いると、次のガロア対応の定理が成り立ちます。以降の論証の基礎となる定理です。

ガロア対応の定理
ガロア対応:53B)

\(\bs{F}\) のガロア拡大体を \(\bs{K}\) とし、ガロア群を \(G\) とする。\(G\) の任意の部分群を \(H\) とし、\(H\) による \(\bs{K}\) の固定体 \(\bs{K}(H)\) を \(\bs{M}\) とする(次式)。

\(\begin{eqnarray}
&&G\:\sp\:H &\sp\:\{e\}\\
&&\bs{F}\:\subset\:\bs{K}(H)=\bs{M} &\subset\:\bs{K}\\
\end{eqnarray}\)

\(\bs{M}\)の固定群を \(G(\bs{M})\) とする(次式)。ガロア群の定義により \(G(\bs{M})=\mr{Gal}(\bs{K}/\bs{M})\) である。

\(\begin{eqnarray}
&&\bs{F}\:\subset\:\bs{M} &\subset\:\bs{K}\\
&&G\:\sp\:G(\bs{M}) &\sp\:\{e\}\\
\end{eqnarray}\)

このとき、
 \(G(\bs{M})=H\)
つまり、
\(\begin{eqnarray}
&&\:\:\mr{Gal}(\bs{K}/\bs{M})&=H \\
&&\:\:\bs{K}(G(\bs{M}))&=\bs{M}\\
\end{eqnarray}\)
が成り立つ。


[証明]

\(G\) の任意の部分群である \(H\) は \(\bs{K}\) の部分集合 \(\bs{M}\) を固定する。一方、\(G(\bs{M})\) は \(\bs{M}\) を固定する \(G\) のすべての元の集合で、それが部分群になっている。従って、\(G(\bs{M})\) は \(H\) を含む。つまり
 \(H\:\subset\:G(\bs{M})\)
であり、群位数は、
 \(|H|\:\leq\:|G(\bs{M})|\)
 \((\br{A})\)
である。

\(\bs{K}/\bs{F}\) はガロア拡大であり、\(\bs{M}\) はその中間体だから、中間体からのガロア拡大の定理(52C)によって、\(\bs{K}/\bs{M}\) はガロア拡大である。また、すべての代数拡大体は単拡大体だから(32B)、\(\bs{K}\) の元 \(\theta\) があって \(\bs{K}=\bs{F}(\theta)\) と表せる。これは、\(\bs{K}=\bs{M}(\theta)\) ということでもある。

\(H\) の \(|H|\) 個の元を \(\sg_i\:\:(1\leq i\leq|H|)\) とし、多項式
 \(f(x)=\displaystyle\prod_{i=1}^{|H|}(x-\sg_i(\theta))\)
を考える。この多項式の次数は \(|H|\) である。\(\sg_i(\theta)\) は \(\theta\) の共役な元のどれかである。

\(f(x)\) を展開すると、その係数は \(\sg_i(\theta)\:\:(1\leq i\leq|H|)\) の対称式になる。また、\(\sg_i(\theta)\) に \(H\) の任意の元 \(\sg_k\) を作用させても、\(\sg_i\) は部分群だから演算で閉じており、\(\sg_i(\theta)\) を入れ替えるだけである(51E)。従って \(\sg_i(\theta)\) の対称式に \(\sg_k\) を作用させても不変である。つまり、\(H\) の任意の元は \(f(x)\) の係数を固定する。ということは、\(\bs{M}\) の定義(= \(H\) による \(\bs{K}\) の固定体が \(\bs{M}\))によって、\(f(x)\) の係数は \(\bs{M}\) の元である。

\(\sg_i\) は群だから単位元を含む。従って、
 \(f(\theta)=\displaystyle\prod_{i=1}^{|H|}(\theta-\sg_i(\theta))=0\)
となり、\(\bs{\theta}\)\(\bs{\bs{M}}\) 上の \(\bs{|H|}\) 次方程式 \(\bs{f(x)=0}\) の解の一つである。ゆえに \(\bs{M}\) から単拡大体 \(\bs{K}=\bs{M}(\theta)\) への拡大次数は、\(f(x)\) が \(\bs{M}\) 上の既約多項式なら単拡大体の基底の定理(33F)により \(|H|\) であり、一般には \(|H|\) 以下である。つまり、
 \([\:\bs{K}\::\:\bs{M}\:]\leq|H|\)
である。次数と位数の同一性52B)によると、拡大次数 \([\:\bs{K}\::\:\bs{M}\:]\) は、ガロア群 \(\mr{Gal}(\bs{K}/\bs{M})\) の位数に等しい。従って、
 \(|\mr{Gal}(\bs{K}/\bs{M})|\leq|H|\)
 \(|G(\bs{M})|\leq|H|\)
 \((\br{B})\)
となる。\((\br{A})\) と \((\br{B})\) により、
 \(|G(\bs{M})|=|H|\)
であり、\(G(\bs{M})\:\subset\:H\) と合わせると、
 \(G(\bs{M})=H\)
となる。従って、
\(\begin{eqnarray}
&&\:\:\mr{Gal}(\bs{K}/\bs{M})&=H \\
&&\:\:\bs{K}(G(\bs{M}))&=\bs{M}\\
\end{eqnarray}\)
である。[証明終]


証明の中に対称式という言葉が出てきます。対称式とは、
 変数の任意の入れ替えで不変な多項式
です。2変数 \(x,\:y\) だと、
 \(x+y,\:xy\)(ここまでが基本対称式)、\(x^2+y^2,\:\:(x-y)^2\)
などです。3変数 \(x,\:y\:,z\) だと、
 \(x+y+z,\:xy+yz+zx,\:xyz\)(基本対称式)、\(((x-y)(y-z)(z-x))^2\)
などです。

対称式でよく出てくるのは、方程式の根と係数の関係です。たとえば、\(\bs{Q}\) 上の既約な3次多項式を \(f(x)\) をとし、\(f(x)=0\) の解を \(\al,\beta,\gamma\) とします。
\(\begin{eqnarray}
&&\:\:f(x)&=x^3-ax^2+bx-c\\
&&&=(x-\al)(x-\beta)(x-\gamma)\\
\end{eqnarray}\)
と書くと、
 \(a=\al+\beta+\gamma\)
 \(b=\al\beta+\beta\gamma+\gamma\al\)
 \(c=\al\beta\gamma\)
と、係数が解の基本対称式で表現されます。

また ガロア群 \(\mr{Gal}(\bs{Q}(\al,\beta,\gamma)/\bs{Q})\) の任意の元 を \(\sg\) とします。\(\al,\beta,\gamma\) の任意の対称式を \(S(\al,\beta,\gamma)\in\bs{Q}(\al,\beta,\gamma)\) とすると、
 \(\sg(S(\al,\beta,\gamma))=S(\al,\beta,\gamma)\)
です。ガロア群の元は自己同型写像であり、方程式の解を解の一つに置き換えるので、これが成り立ちます。自己同型写像を作用させて不変なのは有理数です(51A)。従って、\(S(\al,\beta,\gamma)\) は有理数です。もちろん \(f(x)\) が \(n\)次多項式であっても成り立ちます。


\(\bs{F}\subset\bs{M}\subset\bs{K}\) という体の拡大列で \(\bs{F}\subset\bs{K}\) がガロア拡大のとき、\(\bs{M}\subset\bs{K}\) は自動的にガロア拡大ですが(52C)、ある条件があれば \(\bs{F}\subset\bs{M}\) もガロア拡大になって、\(\bs{F}\subset\bs{M}\subset\bs{K}\) が「ガロア拡大の連鎖」になります。その条件は「ガロア対応」と「正規部分群」の概念を用いて示されます。それが次の正規性定理です。次では \(\bs{Q}\) から始まる体の拡大列で記述しています。

正規性定理
正規性定理:53C)

\(\bs{Q}\) のガロア拡大を \(\bs{K}\) とし、\(\mr{Gal}(\bs{K}/\bs{Q})=G\) とする。\(\bs{K}\) の中間体 \(\bs{M}\) と \(G\) の部分群 \(H\) がガロア対応になっているとする。このとき

① \(\bs{M}/\bs{Q}\) がガロア拡大である
② \(H\)が\(G\)の正規部分群である

の2つは同値である。また、これが成り立つとき、
 \(\mr{Gal}(\bs{M}/\bs{Q})\:\cong\:G/H\)
という群の同型が成り立つ。


[① \(\bs{\Rightarrow}\) ②の証明]

\(G\) の任意の元を \(g\) とし、\(\bs{M}\) の任意の元を \(m\) とする。

\(\bs{M}\) が \(\bs{Q}\) のガロア拡大なので、\(m\) の共役な元は \(\bs{M}\) に含まれる。\(g\) は同型写像だから、\(\bs{K}\) の元を共役な元に移す(51D)。つまり、\(g\) を \(m\) に作用させると \(m\) と共役な元に移すことになり、 \(g(m)\in\bs{M}\) である。また \(g^{-1}\) も \(G\) の元だから \(g^{-1}(m)\in\bs{M}\) である。

\(H\) の任意の元を \(h\) とする。\(H\) は \(\bs{M}\) とガロア対応をしているから、\(h\) は \(\bs{M}\) の元を不動にする。ゆえに、
 \(hg^{-1}(m)=g^{-1}(m)\)
である。従って、
 \(ghg^{-1}(m)=gg^{-1}(m)=m\)
となり、\(ghg^{-1}\) は \(\bs{M}\) の元を不動にするから \(H\) の元である。そうすると、
 \(gHg^{-1}\:\subset\:H\)
 \(gH\:\subset\:Hg\)
 \((\br{C})\)
が成り立つ。

また、\(g(m)\) も \(\bs{M}\) の元なので、
 \(hg(m)=g(m)\)
である。従って、
 \(g^{-1}hg(m)=g^{-1}g(m)=m\)
となり、\(g^{-1}hg\) も \(\bs{M}\) の元を不動にするから \(H\) の元である。そうすると、
 \(g^{-1}Hg\:\subset\:H\)
 \(Hg\:\subset\:gH\)
 \((\br{D})\)
が成り立つ。\((\br{C})\) と \((\br{D})\) により、
 \(gH=Hg\)
となって、左剰余類と右剰余類が一致するから、\(H\) は \(G\) の正規部分群である。

[② \(\bs{\Rightarrow}\) ①の証明]

\(\bs{M}\) の任意の元を \(m\) とする。同型写像の延長の定理(51H)により、\(\bs{M}\) の同型写像 \(s\) は \(\bs{K}\) の同型写像 \(g\) に延長できる。つまり、\(g\) を \(\bs{M}\) の元に限定して作用させたとき \(g(m)=s(m)\) となる \(g\) がある。

\(H\) の任意の元を \(h\) とすると、\(h\) は正規部分群の元なので、
 \(g^{-1}hg\:\in\:H\)
である。従って、
 \(g^{-1}hg(m)=m\)
 \(hg(m)=g(m)\)
となり、\(g(m)\) は \(H\) の任意の元で不動である。
ガロア対応の原理により \(\bs{K}(H)=\bs{M}\) なので、
 \(g(m)\:\in\:\bs{M}\)
となり、\(g(m)\) は \(H\) の固定体 \(\bs{M}\) の元である。

\(\bs{M}\)の元に \(g\) を作用させるときは \(g(m)\) は \(s(m)\) そのものなので、
 \(s(m)\:\in\:\bs{M}\)
となる。

以上により、\(\bs{M}\) の同型写像による \(m\) の移り先(= \(m\) と共役な元)は \(\bs{M}\) に含まれることになり、\(\bs{M}/\bs{Q}\) はガロア拡大である。[証明終]

\(\bs{\mr{Gal}(\bs{M}/\bs{Q})\:\cong\:G/H}\) の証明]

同型写像の延長の定理(51H)の証明で示したように、\(\bs{M}\) の同型写像 \(s\) を \(\bs{K}\) の同型写像に延長する可能性は複数ある。\(g_1\) と \(g_2\) を \(s\) の2つの延長とし、\(\bs{M}\)の元を \(m\) とする。\(g_1,\:g_2\) は、\(\bs{M}\) に限定して適用すると \(s\) に等しいから、
 \(g_1(m)=s(m)\)
 \(g_2(m)=s(m)\)
が成り立つ。

\(g_1^{-1}g_2\) を \(m\) に作用させると
\(\begin{eqnarray}
&&\:\:g_1^{-1}g_2(m)&=g_1^{-1}(s(m))\\
&&&=g_1^{-1}(g_1(m))=m\\
\end{eqnarray}\)
となり、\(g_1^{-1}g_2\) は \(\bs{M}\) の元を不動にする。よって、
 \(g_1^{-1}g_2\in\:H\)
 \(g_2\in\:g_1H\)
である。

つまり、\(g_2\) は \(H\) の剰余類の一つの集合 \(g_1H\) に入る。以上で、\(\bs{M}\) の同型写像 \(s\) は、同型写像の延長を通して 剰余類 \(G/H\) の一つを定めることが分かる。

逆に \(g_1\) と \(g_2\) が 剰余類 \(G/H\) の同じ集合に属すると、
 \(g_2\in\:g_1H\)
 \(g_1^{-1}g_2\in\:H\)
 \(g_1^{-1}g_2(m)=m\)
 \(g_2(m)=g_1(m)\)
となり、\(g_1\) と \(g_2\) は \(\bs{M}\) 上で全く同じ作用をする。従って、\(\bs{M}\) 上で \(g_1,\:g_2\) と同じ作用をする \(\mr{Gal}(\bs{M}/\bs{Q})\) の元 \(s\) を定められる。つまり、剰余類 \(G/H\) の一つの集合が \(\mr{Gal}(\bs{M}/\bs{Q})\) の元を一つ定める。

従って、
 \(\mr{Gal}(\bs{M}/\bs{Q})\:\cong\:G/H\)
である。[証明終]

「5.ガロア群とガロア対応」終わり 
次回に続く


nice!(0)