SSブログ

No.181 - アルファ碁の着手決定ロジック(2) [技術]

前回から続く)

前回の No.180「アルファ碁の着手決定ロジック(1)」の続きです。以下に出てくる policy networkSL policy networkRL policy networkロールアウトUCB については前回の説明を参照ください。


モンテカルロ木検索(MCTS)の一般論


モンテカルロ木検索(Monte Carlo Tree Search : MCTS)は、現代のコンピュータ囲碁プログラムのほとんどで使われている手法です。以下にMCTSの最も基本的なアルゴリズムを書きますが、もちろんこのような話はディープマインド社の研究報告には書かれていません。MCTSは既知のものとしてあります。しかしアルファ碁の検索はMCTSにのっとっているので、このアルゴリズムが分かると、アルファ碁の検索手法も理解できます。

  余談ですが、モンテカルロという言葉は数学において「確率的なアルゴリズム」である場合に使われます。たとえば「モンテカルロ法で円周率を計算する」としたら、円周率は半径 1 の円の面積なので、0 以上 1 以下の実数の乱数を2つ発生させ、そのペアを平面上の座標値として原点からの距離を計算する。そして、距離が 1 以下かどうかを判定する。この計算を大量にやって 1 以下の個数の割合を計算すると、その割合の 4 倍が円周率ということになります。

余談の余談ですが、こういった問題は中高校生にプログラミングを教えるのには最適ではないかと思います。現代のパソコンは、この計算を1000万回繰り返すなど、わけなくできます(家庭用パソコンで1~2秒)。もちろん、1000万回繰り返しても精度は悪く(せいぜい小数点以下4桁程度)実用にはなりませんが、コンピュータの威力を実感するには最適だと思います。

以下、候補手のことを、木検索の「ノード」と呼びます。最初に、現在の盤面(白が打った直後の黒の手番とします)から黒の候補手のノードを展開します(下図)。これらノードに対して、UCB値が最大のノードを「木検索」でたどり、末端ノードに達したときロールアウトをします。その勝敗結果を、当該ノードから木検索を逆にたどって反映させます(=逆伝播)。UCB値は、逆伝播の結果で関係するものが再計算されます。

あるノードのロールアウト回数が閾値以上になったとき(下図では10回)、そのノード(下図ではNode-A)を「展開」し、次の候補手のノードを作ります。「展開」を行う閾値の設定によって、限られた時間でどこまで深く読むかが決まってきます。「展開」のあと、改めて最上位のノードから始まって最大UCBのノードをたどって末端ノードに到達します(下図ではNode-F)。そこでロールアウトを行い、結果を逆伝播させます。そしてUCB値を再計算します。UCBの計算式は、木が増殖していくことを考慮して、次のように再定義します。

UCBi 候補手i のUCB
Ni 候補手i 以下のノードのロールアウト数
Wi 候補手i 以下のノードのロールアウトによる勝ち数。候補手の色に依存。
N 候補手i の親ノードのNi
k 定数(探検定数 と呼ばれることがある)
MCTS_REV.jpg
白の候補手である Node-F からロールアウトを行って "白勝ち" の結果が出たので、木を逆にたどってその結果を反映させる(=逆伝播。赤矢印)。そして「逆伝播で修正した Node を親に持つ Node」の UCB を再計算する(黒矢印)。その結果、黒の候補手としては Node-A より Node-C の UCB が大きくなる。Node-A が有力そうだったが、その次の白番 Node-F で白の勝利数が増えたため Node-A の有力度合いが減った。

この時点で黒の候補手の勝率は明らかに Node-A が最大であるが、それだけにこだわっていたのでは隠れた好手を見逃す危険性がある。Root から UCB の最大値をたどって木検索をすると(青矢印)、次のロールアウトの対象は Node-C になる。つまり、まだロールアウトの回数が少ない Node-C もロールアウトすべきという判断になる。

UCB は Upper Confidence Bound(=信頼上限)で、手の有力度合いの上限値である。「教師なし機械学習」の理論で使われるもので、それをコンピュータ囲碁の木検索に応用した。ロールアウトに加えて UCB のアルゴリズムを採用することでコンピュータ囲碁は飛躍的に強くなった。その次の飛躍がディープマインド社による「深層学習+強化学習」の適用ということになる。

この図は黒白とも候補手が3つしかない単純化された状況です。従って閾値(=10)以上のロールアウト回数になった Node-A を展開するとき、次の白の3つの候補手はいずれも "ロールアウト経験済" で、そのデータを生かしたものとしました。しかし一般的には展開の段階で "ロールアウト未経験" の候補手が現れるわけで、そのような候補手は Ni がゼロであり、Node-Aの次の一手としては真っ先にロールアウトされることになります。

上の図で Node-F の次にロールアウトされるのは Node-C ということになります。上図のように少ないロールアウト総回数では、候補手のロールアウト回数が少ないことが有利になるからです。図で言うと、Node-A が有力そうで「開拓」してみたが、ひょっとしたら Node-C が宝の山かも知れないから「探検」しようというわけです。

このような「木検索」「ロールアウト」「逆伝播」「UCB再計算」「展開」を許容時間まで繰り返します。そして最終的に次の一手として、ロールアウト回数が最も多い手を選びます。勝率最大の手は "ロールアウト回数少ないから勝率が高い" かもしれないからです。これがモンテカルロ木検索(MCTS)です。

なお、以上に述べたUCBの計算式はあくまでコンピュータ囲碁に導入された当初のもので、最新のコンピュータ囲碁プログラムは独自の計算式を使っているようです。後で説明するようにアルファ碁も独自の式です。しかし「開拓項」と「探検項」を組み合わせ、バランスよく、かつ無駄を避けつつ有効な手を探索することは同じです。



現代のコンピュータ囲碁プログラムは MCTS をベースとし独自に改良を加えていますが、MCTSには大きな弱点があります。それは、

  黒と白の "必然の応酬" が長く続き、結果は "ほどほど" のワカレになるか、仕掛けた方が少しの利得を得る。ただし必然の応酬を間違えると、間違えた方が多大な損失をこうむ

というようなケースに弱いことです。MCTSはあくまで確率的に最善手に近づこうとするものです。最善手が明白に1つしかない状況が連続すると、MCTSは間違える率が高くなる。囲碁で言うと、死活の問題とか攻め合いとかコウ争いです。このあたりをどうカバーするかは、コンピュータ囲碁プログラムのノウハウです。

このMCTSの弱点について思い出すシーンがあります。No.174「ディープマインド」で書いたように、アルファ碁とイ・セドル九段の対戦の第4局は、アルファ碁の唯一の敗戦となりました。イ・セドル九段が放った白78(No.174参照)のあと、アルファ碁は「素人でもわかる損な手」を連発し、一挙に敗勢になってしまったのです。それまで世界最高クラスのプロ棋士と(少なくとも)互角に渡り合ってきたアルファ碁が、急に "狂った" か "暴走した" ように見えた。このあたりについてディープマインド社のデミス・ハサビスCEOは、あるインタビューで「モンテカルロ木検索の弱点が露呈した」という意味の発言をしていました。この発言の真意を推測すると、

  イ・セドル九段の "白78" という手に対する正しい応手がいくつかの必然手の連続であるため、アルファ碁はそれを最後まで読み切れずに、敗勢になったと判断した

のだと考えられます。従ってアルファ碁(黒番)は、全く別の「白が誤れば黒が得だが、白に正しく応じられれば黒が損をする手」を打った。これが悪手を連発することになった理由と考えられます。アルファ碁の手に対する白の正しい応手はアマチュアでも分かったので、いわば "ハッタリ" の手です。

しかしよくよく考えてみるとプロ棋士同士の戦いで、敗勢の時に「成功確率は低いが、成功すると大きな得になって優劣不明に持ち込める手」を打つことがあります。たとえば、相手の勢力範囲の中に深く打ち込んで活きようとするような手です。「さあ殺してください。殺せますか?」と開き直るような手です。そして、たとえプロ棋士と言えども応手を誤れば打ち込んだ石が活きてしまって形勢不明になったりする。こういう手を "勝負手" と言ったりします。

残念ながらアルファ碁は "ハッタリ" と "勝負手" の区別ができなかったようです。それは常に確率的な判断で勝敗を予測している現状のアルファ碁では致し方ないと思います。それより本質は「モンテカルロ木検索の弱点」です。これを解消するような手段を、ディープマインド社は今後繰り出してくるでしょう。そして弱点を解消した上でさらに、敗勢と判断したときの "ハッタリ" を防止する手も打ってくるのではないでしょうか。ディープマインド社には、デミス・ハサビスCEOをはじめ Go Player が多いようです。Go Player にとって許せないのは、勝負に負けることよりも素人にもわかる "ハッタリ" を打つ(="きたない" 棋譜を残してしまう)ことだろうから・・・・・・。それは対戦相手であるプロ棋士に対しても失礼です。



アルファ碁は以上のモンテカルロ木検索(MCTS)をロジックの根幹にしていますが、加えて value network というニューラルネットワークを構成し、それを勝率の判断に使っています。その説明が以下です。


value network


アルファ碁の基本的な考えかたは、

  RL policy network によるロールアウトでモンテカルロ木検索を行う

というものです。SL policy network は囲碁熟練者の着手を 57% の精度で予測でき、RL policy network は SL より強いので(前回の No.180 参照)、これができると最強のモンテカルロ木検索になりそうです。

しかし、このままではうまくいきません。それは処理時間の問題です。policy network の計算には3ミリ秒かかります。終局までロールアウトする手数を平均100手とすると、ロールアウトに最少でも300ミリ秒 = 0.3秒必要です(その他、木検索の時間が必要)。前回の No.180 で述べた値を採用して1手に費やせる "思考" 時間を72秒とすると、この時間で可能なロールアウトは240回ですが、この程度の回数では話になりません。少なくとも10万回といった、そういう回数が必要です。

そこで登場するのが value network です。value とは価値という意味ですが、ここでは盤面の(次の打ち手にとっての)価値、という意味であり、盤面の優劣というのがシンプルな言い方です。この優劣は「勝率」で表現します。つまり、

  value network とは、"RL policy network を使ったロールアウト" による勝率判定を近似するニューラルネットワーク

です。つまり「ロールアウトを代行する」ニューラルネットワークであり、この発想がユニークというか、その作り方を含めて、ディープマインド社の独自性を感じるところです。value network の計算時間は policy network と同じ3ミリ秒です。従って、近似の精度が高いという前提で、候補手から RL policy network によるロールアウトを例えば100回繰り返すより、value network は1万倍高速に計算できることになります(ロールアウトにおける終局までの手数を100とした場合。100×100で10,000)。

value network の構造は policy network とほぼ同じです。入力層と隠れ層1~13は、policy network の入力層と隠れ層1~12、および出力層とほぼ同じ構造をしています。ただし入力層には49番目のプレーンが追加されていて、それは石の色です。つまり黒番か白番かを勝率判定に使います。隠れ層14は256×1であり、出力層は1×1です。出力層は -1.0 ~ +1.0 の1個の実数値であり、入力層の勝率を表します(ゼロが互角)。
Value Network.jpg
value network の訓練に使われたデータは、KGS Serverからダウンロードした約3000万の盤面データではなく、SL policy network で作り出された盤面(state)です。value network の場合、KGSのデータを訓練データとすると "過学習" になってしまったからです。つまり、訓練データでは非常に成績がいいが、訓練データ以外となると成績が悪くなる。同じ教材に学び過ぎて応用問題が解けないわけです。その理由ですが、3000万の盤面は約16万局のデータであり、同じ対戦の盤面データ同士には強い相関関係があるからです。しかも、同一対戦の勝ち負けはどちらかに固定される。相関関係のない盤面データは、16万局のデータからは16万しか取り出せません。しかし訓練すべきパラメータ(重み)の総数は388万もあります(前回参照。policy networkの値。value networkはもう少し多い)。16万という数では学習になりません。

そこで、1つの訓練データを作るために、まず1~450までの数からランダムに U を選びます。そしてSL policy network で第1手から第(U-1)手目までを打ち、第U手目は合法手をランダムに打ちます(!!)。その結果の盤面(state)を訓練用のデータとします。このデータを RL policy network でロールアウトを繰り返し、勝率を求めます。このstateと勝率の組が訓練データの一つとなります。これを合計3000万組作成し、それを教師として学習させたのが、value network です。この訓練データの作り方は非常にユニークであり、なぜそうするのかという理由は書いていないのですが(450 ??)、ディープマインド社の試行錯誤の積み重ねによるノウハウの蓄積を感じるところです。

ディープマインド社の研究報告には「value network を使った勝率推定は、RL policy network でロールアウトして勝敗を判定するより 15,000倍 速い」と書かれています(上で1万倍速い、と推定した値)。



ここまでの説明におけるニューラルネットワークについて復習すると、以下のようになります。このネットワークは隠れ層が多段階になっているディープ・ニューラルネットワーク(Deep Neural Network)なので、DNNと表記します。

  policy network = 熟練者が打ちそうな手を予測
  SLRLの2種類。
SL:大量の熟練者の打ち手を機械学習したDNN
RL:DNN同士の自己対戦で、SLをさらに強化 したDNN

value network = 現在の盤面の優劣を判定
  SLで初期盤面を作り、そこからRLでロールアウトを繰り返して勝率を求める。その初期盤面と勝率のペアを大量に作成して、それを機械学習したDNN

アルファ碁は囲碁プログラムに深層学習の技術を持ち込んだのですが、そのDNNは以上のように2段階になっています。この2つのDNN(policy networkを2つに分けると合計3つのDNN)を使い分けるのがアルファ碁です。

これらのDNNのうち、policy network は "自然な発想" に思えます。熟練者の打った手を機械学習し、さらには自己対戦で強化学習もやって「次に打つ手を決めるDNN」を作る。AIと囲碁に詳しい人なら容易に思い浮かぶ発想だと思います。もちろんディープマインド社独自の工夫やノウハウが詰め込まれているのですが、基本のアイデアそのものは自然です。

これに対して value network は、ちょっと思いつかない発想です。policy network とロールアウトを使って「盤面の勝率を計算するDNN」を作れるはずだ・・・・・・。このアイデアを発想し、かつ実用になるまで磨き込んだのがディープマインド社の大きなブレークスルーだと思います。

ただし、アルファ碁はこれらの DNN だけでなく従来手法のロールアウトも併用しています。それが以下の説明です。


rollout policy


value network は、まさにコンピュータ将棋でいう「評価関数」に相当します(コンピュータ将棋の評価関数については No.174「ディープマインド」参照)。囲碁で評価関数を作るのは困難と言われていたのですが、ディープマインド社はそれを覆したわけです。従って、木検索と value network を使ってコンピュータ囲碁プログラムが作れるはずですが、少々意外なことにアルファ碁はそうはなっていません。従来手法のロールアウトも併用しています。これはもちろん RL policy network を使うのではありません。それでは遅すぎます。ロールアウト専用の「ロールアウト・ポリシー」を使います。

アルファ碁のロールアウト・ポリシー(rollout policy。研究報告では fast rollout policy と書いてある)は次のようなものです。まず、自分が打つ手を、直前に相手が打った手(直前手)に応答する手と、そうではない手に大別します。そして手を以下のように詳細分類します。

アタリから逃げる手。1種。
直前手の周り8箇所のどこかに打つ手。8種。
ナカデを打つ手。8,192種。このパターンは手作り。
応答手 = 直前手の周辺12箇所に打つ手。12箇所とは、直前手の周辺8箇所プラス、直前手から上下左右に2つ離れた4箇所。12箇所の石の配置パターンと呼吸点の数で分類し、合計 32,207種。
非応答手 = 直前手には応答しない手。打つ手の周辺の3 X 3 領域を石の配置パターンと呼吸点の数で分類して、合計 69,338種。

つまり碁の着手を合計、109,746種に分類し、実際の対局でどの手が多く打たれたか回帰分析の手法で分析し、ロールアウト・ポリシーの計算式を求めます。もちろんロールアウト・ポリシーは高速演算が必須条件なので、ニューラルネットワークは使わず、通常の線形演算(マトリクス演算)で可能な回帰式です。

この回帰式を求めるのに使われた訓練データは(少々意外なことにKGS Go Serverではなく)Tygem の800万の盤面データです。「タイゼム(Tygem)」は韓国の東洋オンライン社が運営する有料の囲碁対局サイトで(無料もある)、日本では「東洋囲碁」です。利用者は東アジア(韓国、日本、中国)が中心です。

以上のように、ロールアウト・ポリシーは熟練者の実際の手を予測するもので、その意味では policy network と同じです。しかし予測の精度が違います。前に SL policy network の予測精度は 57.0% と書きましたが、ロールアウト・ポリシーの予測精度は 24.2% です。SL policy network よりかなり低いわけですが、これはもちろんロールアウトに使う目的だから「ランダムなロールアウトよりは格段にマシ」なわけです。しかも計算時間が policy network より圧倒的に速い。

ロールアウト・ポリシーの計算時間は 2マイクロ秒です。ということは、3ミリ秒の RL policy network より1500倍高速ということになります。研究報告には ロールアウト・ポリシーによるロールアウト(初手から始める)を1秒間に約1000回できるとあります。アルファ碁のメイン・コンピュータは 40 多重で計算可能です。つまり、1秒間に(少なくとも)4万回のロールアウトが可能ということになります。1回の平均思考時間を72秒と仮定すると、約300万回のロールアウトが可能なことになり、これは十分な数です。ちなみに多重処理について言うと、policy network / value network はサブのコンピュータで1個づつ(多重処理なしに)計算されます。1回の計算そのものが多重処理されるからです。


アルファ碁のモンテカルロ木検索(MCTS)


アルファ碁のMCTSのアルゴリズムは、上に述べた基本のMCTSと考え方は同じです。つまりUCB値の最大値をたどって木検索を行い、ロールアウト・ポリシーでロールアウトを行います。ただし次の点が基本のMCTSと違っています。

候補手の勝率の判定に、ロールアウトによる勝率だけでなく、value network による勝率を加味する。

アルファ碁独自のUCB値の計算式を使う。ここに policy network による確率(囲碁熟練者がそこに打つ確率の推定値)を使う。

の2点です。まず①ですが、アルファ碁は検索が木の末端に到達するとまず、value network の計算を行います。実際にはニューラルネットワークの計算は、検索やロールアウトを行うメイン・コンピュータとは別のサブ・コンピュータで行っており、そこに計算の依頼だけを出します。木の末端が既に value network の計算依頼を出している場合(ないしは計算済の場合)はロールアウト・ポリシーによるロールアウトになりますが、value network の計算は3ミリ秒かかり、ロールアウト・ポリシーによるロールアウトの計算は最大でも1ミリ秒(1秒間に1000回)なので、この2つは一般的には平行して行われることになります。もちろん value network の計算は一つのノードにつき1回だけです。なお、ロールアウトの1ミリ秒というのは報告に書いてある最大値(初手からのロールアウト)なので、実際にはその数分の1だと考えられます。

同一の末端ノードを訪れる回数が閾値を越えるとノードを展開するのは、基本のMCTSと同じです。その閾値はpolicy network / value network の計算のための "待ち行列" の長さによって動的に変更します。早めに展開し過ぎてニューラルネットワークの計算が間に合わないのでは意味が無いからです。

ノードを展開するとき(=次の候補手をリストアップするとき)には、policy network を使って、その候補手の確率(=囲碁の熟練者がその候補手を打つ確率の推定)を計算してノードに記憶しておきます。この値はそのノードの UCB の計算に重要な役割を果たします。



  ただし、話がややこしいのですが、policy network の計算を依頼してから終わるまでの間、別の暫定値で policy network の値の代用とするというロジックが研究報告に書かれています。これが ツリー・ポリシー(tree policy)と呼ばれるもので、このポリシーの作り方はロールアウト・ポリシーとほぼ同じです。ただし、打ち手の分類がロールアウト・ポリシーよりも詳しい(分類数が約1.5倍)。つまりロールアウト・ポリシーよりは計算時間がかかるが、熟練者が打つ手の予測はロールアウト・ポリシーよりは正確ということだと思います。このツリー・ポリシーの計算時間は研究報告には書いていないのですが、たとえば 3マイクロ秒だとすると policy network(計算時間=3ミリ秒)より1000倍速いことになります。正確さに欠けたとしても policy network の計算終了を待ってられない。暫定値でもよいからモンテカルロ木検索をどんどん進めた方がいい・・・・・・。このあたり、コンピュータ囲碁にニューラルネットワークを持ち込むということは、ニューラルネットワークの計算の遅さをいかにカバーするかが非常に大切なことがわかります。

とは言え、ここで感じる疑問は、ロールアウト・ポリシーとツリー・ポリシーという "似て非なるもの" がなぜあるのかです。ロールアウト・ポリシーをやめてツリー・ポリシーでロールアウトしてもよいはずです。論文を読む限りそれは十分可能で、一見、その方がよさそうな気がします。なぜ二つあるのか。推測なのですが、問題は処理時間ではと思います。ツリー・ポリシーの計算時間が3マイクロ秒だとするとロールアウト・ポリシー(計算時間=2マイクロ秒)の1.5倍であり、ということはツリー・ポリシーでロールアウトすると一定時間でロールアウトできる回数が3分の2になってしまいます。ツリー・ポリシーだとロールアウトの回数が稼げず、かえって弱くなってしまう・・・・・・。そういうことかと想像しました。逆に言うとロールアウト・ポリシーは "手を読む精度" と "計算時間" という二つのトレードオフのぎりぎりのところを狙って設計されているのではと感じました。想像ですが、最初にツリー・ポリシーが設計されてロールアウトにも使っていたが、よりロールアウト回数を稼ぐために簡略化した(従って速い)ロールアウト・ポリシーが作られたのではないでしょうか。ロールアウト・ポリシーを研究報告では fast rollout policy としてあるのは、そういう意味かと思いました。



②のアルファ碁独自のUCB値の計算式(UCBAlphaGo とします)は、次のような形をしています。次式は研究報告にある式を、本質を変えない範囲で簡略化しました。また記号を少し変えてあります。
UCBalphago.jpg
上の式における Q(-1.0~1.0) は、研究報告で action value と書かれているもので、その時点までに判明している候補手の勝率を表します。つまり、勝率の高い項ほど「開拓」するようになります。なお、候補手の最大の Q が -0.8 以下になったとき(通常の意味での勝率が 10% を切ったとき)、アルファ碁は投了します。

λはアルファ碁のチューニングのためのパラメータで、0.0~1.0 の数字です。要するに value network の勝率推定とロールアウトによる勝率推定のどちらを重視するかです。研究報告では、この値を実戦では 0.5 にしたとあります。つまり、2つの勝率推定の平均値をとるということです。その理由は、各種のコンピュータ囲碁プログラムと対戦してみて、それが一番強かったからです。このあたり、いろいろと試行錯誤があったようです。

u(P)は「探検」に相当する項です。これは基本のMCTSの UCB の第2項と似ていて、考え方は同じです。ただし、大きな違いは P の存在です。これは、そのノードを生成したときに計算しておいた、policy network による候補手の確率値です(但し、先ほど書いたように、この値の計算が終わるまでは tree policy で代用します)。つまり熟練者が打ちそうな手ほど重視するということであり、これは非常に納得できます。

しかし全く意外なのは、この値が RL policy network ではなく SL policy network だということです。つまり、最強のはずの RL policy network は、対戦には全く使われていません。RL policy network は value network を作るために(対戦前に)使われるだけなのです。前に RL はコンピュータ囲碁プログラム(Pachi)と対戦して 85% の勝率だったが、SL は 11% の勝率だった、と書かれていました(前回の No.180 参照)。そんなに強い RL をなぜ使わないのか・・・・・・。これについて研究報告では次のように書かれています。


The SL policy network performed better in AlphaGo than the stronger RL policy network, presumably because humans select a diverse beam of promising moves, whereas RL optimizes for the single best move.

(試訳)
アルファ碁では SL policy network の方が、より強い RL policy network よりも良くプレーした。これはおそらく、人間は多数の打つべき手の "光"(beam)を選別しているのに対し、RL policy network は一つの最良の手に向けて最適化するからだろう。


世界トップクラスの学術雑誌に載せる研究報告にしては、曖昧で意味が取りにくい文章です( beam ? )。さらに研究報告の次の文章では、SL policy network を使って作った value network でプレーしてみたが、それは RL policy network で作られた value network(対戦に使われたもの)より成績が悪かった、と書いてあります。

推測するに、RL policy network の出す確率は最良の手にピンポイントで集中する傾向にある。それに対して SL policy network の出す確率は「良さそうな手」に分散する傾向がある。これは人間の思考に近く、候補手を広く探索する目的で使うにはその方がよい。value network を作るときのロールアウトのように、policy network の出す確率だけに従って手を打つのなら、RL policy network がの方がよい、ということだと思います。

そう推察できるものの、何となく納得できない説明です。RL policy network は SL policy network より明らかに強い。つまり、最善手や次善手を指し示す確率が高いわけです。だとすると、UCBAlphaGo という MCTS の探索方向を決める超重要な値には RL policy network の値を採用してしかるべきです。上の引用の説明はそれだけ読むと「そうかも知れない」と思ってしまうのですが、論文全体としては矛盾しています。

引用に「たぶん(presumably)」と書いてあるように、ディープマインド社も UCBAlphaGo に SL policy network の値を採用した方が強くなることの明確な理由を説明できないのだろうと思います。このあたりディープマインド社もいろいろと試行錯誤し、対局を繰り返して現在のアルファ碁に到達したことがわかります。



以上は、UCBAlphaGo の u(P) の部分(探検項)についての議論ですが、やはりアルファ碁の着手決定ロジックの根幹は Q(action value)という勝率判定に関わる部分です。ここでは「rollout policy を使ったロールアウトによる勝率判定」と「value network による勝率判定」をミックスさせています。

rollout policy と value network にはそれぞれメリット・デメリットがあります。rollout policy のデメリットは、この policy がアマ高段の手を 24.2% の確率でしか予測できないことです。つまり「弱い打ち手」が最後まで打ってみて(=ヨセてみて)勝率を判定していることになる。これは勝率判定の誤差が大きくなると考えられます。しかし「現状の盤面そのものからロールアウトする」というメリットがある。

一方の value network は RL policy network という「極めて強い打ち手」を使って作られた勝率の予測システムです。最後まヨセてみたらどうなるかを正確に予測できるはずです。ただし、あくまでDNNを使った近似であって「現状の盤面から RL policy network を使ってロールアウトするのではない」ことがデメリットです。

この2つが相補って精度の高い勝率判定ができたことが、アルファ碁の成功原因だと考えられます。



研究報告では、その他、細かい検索のアルゴリズムやニューラルネットワークの学習の手法が多々書いてあるのですが、本質的なところは上の説明に尽きていると思うので省略します。

もう一度念を押しますが、研究報告に書かれているのは、韓国のイ・セドル 九段と戦う数ヶ月前の状況です。研究報告にあるグラフから読みとれるのは、その当時のアルファ碁の強さは KGS のレーティングで 5p(プロ五段)相当ということです。これとイ・セドル 九段は、相当な開きがあります。その後の数ヶ月の間、ディープマインド社は数々の強化をしたはずです。ロジックの見直しやチューニングはもちろんのこと、ロールアウト時間の短縮やニューラルネットワークの演算高速化もあったのではないでしょうか。計算性能は「読める手の数」に直結するので大変に重要です。以上のようなことを頭に置いておくべきでしょう。

以降は、ディープマインド社の研究報告を読んだ感想です。


感想:アルファ碁とは何か


No.174「ディープマインド」で書いたように、アルファ碁は AI研究の画期的な成果であり、それどころか、コンピュータの発展の歴史の転換点ともいえるものだと思います。その考えは変わらないのですが、研究報告を読むといろいろなことが見えてきます。

 囲碁の常識が盛り込まれている 

個人的な一番の関心事は、アルファ碁がどこまで汎用的であり、どこまで囲碁ディペンドなのかという点でした。No.174「ディープマインド」で「Nature ダイジェスト 2016年3月号」より、次の説明を引用しました。


アルファ碁は、囲碁を打つプログラムではない。汎用アルゴリズムに対局パターンの情報を大量に読みとらせて学習させた。同社の別のAIは同様にして Atari 2600の49種類のビデオゲームのプレイを学習している。

Elizabeth Gibney(三枝小夜子・訳)
「Nature ダイジェスト 2016年3月号」

しかし研究報告を実際に読んでみると「汎用アルゴリズム」という言い方の印象がかなり変わりました。確かに policy network や value network に機械学習をさせたり強化学習をすのは汎用のアルゴリズムですが、アルファ碁全体をみるとそうとは言えない。もちろんゲームである以上、ゲームのルールや勝敗の決め方を教え込むのは必須です。しかし、それ以外に「囲碁の常識」がかなり含まれています。たとえば policy network / value network の入力層における「ダメヅマリ」を判別できるプレーンとか、シチョウに取る手、シチョウから逃れる手などです。また、rollout policy におけるナカデのパターン(8192種)です。この程度の常識は教え込まないと、とても強いプログラムは作れないのでしょう。

逆の観点からすると、現代のコンピュータ囲碁プログラムの強豪に比べるとアルファ碁は "囲碁の常識の入れ具合い" が少なく、それでもヨーロッパ・チャンピオン(プロ)に勝ったというところに価値があるのかもしれません。

そもそも policy network / value network の出発点は、アマチュア高段者が実際に対局した 2840万の盤面データであり、それは大袈裟に言うと囲碁2000年の歴史の結晶です。アルファ碁はそこから出発しています。囲碁を打つ際の人間の英知がなければ、アルファ碁はなり立たなかったわけで、そこは再認識しておくべきだと思います。

そして、このことがアルファ碁の "限界" にもなりうると思いました。典型的なのは(アルファ碁独自の)UCBの計算式に policy network を取り入れていることです(上の説明参照)。これはどういうことかと言うと「人間の熟練者が打ちそうな手ほど優先して深く読む」ということです。これはいかにもまっとうに見えるし、プロ棋士と戦って勝つためにはこれが最善なのかも知れません。しかし我々がコンピュータ囲碁プログラムに真に期待するのは、囲碁の熟練者が思いもつかない手、囲碁の歴史で培われてきた "常識" ではありえないような手、そういう手の中で「最善とは断言できないが、十分に成立する手」をコンピュータ囲碁プログラムが打つことなのです。それでこそコンピュータの意義だし、囲碁がいかに奥深いものかを再認識できることになるでしょう。人間のマネをし、人間より遙かに高速に、遙かに深く読める(しかも心理的な動揺や疲れなどが全くない)ことだけに頼って勝つというのでは、"おもしろくない" わけです。

このあたり、アルファ碁にはまだ幾多の改良の余地があると見えました。

 アマチュア高段者の打ち手を学習 

アルファ碁の「畳み込みニューラルネットワーク」の訓練(=機械学習)に使われたデータがプロの棋譜ではなく、KGS Go Server で無料のオンライン囲碁対局を楽しんでいるアマチュア高段者(6d~9d)の棋譜(約16万)というのは意外でした。アルファ碁はプロ棋士に勝つ目的で開発されたものであり、2015年10月に樊麾(ファン・フイ)2段に5戦5勝の成績をあげました。樊麾2段はフランス在住ですが、中国棋院の2段です。アマチュア高段者が中国棋院のプロ2段に勝つことはありえません。つまりアルファ碁の機械学習はあくまで出発点であって、その後の強化学習(RL policy network)や value network、rollout policy に強さの秘密があると考えられます。

しかし、どうせなら初めからプロの棋譜を機械学習すればいいのでは、と思うわけです。なぜアマチュアの棋譜なのか。16万局程度のプロの棋譜が入手できなかったとも考えられますが、ふと思い当たることがあります。No.174「ディープマインド」で紹介した、日本のプロ棋士の方がアルファ碁の "戦いぶり"(対、イ・セドル 九段)を評して語った言葉です。

いままでの感覚とはかけ離れたものがあった。弟子が打ったら、しかり飛ばすような」(王 銘琬めいえん 九段)

空間や中央の感覚が人間と違う。懐が深い」(井山 裕太名人)

この二人のプロ棋士が言う「感覚」とは、当然「プロの感覚」ということでしょう。アルファ碁は、無料のオンライン囲碁対局を楽しむアマチュア高段者の棋譜で訓練された。だからこそ「プロの感覚」とは違うものになったのではと、ふと思ったのです。そういう要素もあるのではないか。

しかも集められた約16万の棋譜の35.4%は置き碁の棋譜なのです。ディープマインド社の研究報告にそう書いてあります。アルファ碁は、プロの世界トップクラスと互先たがいせんで(ハンディキャップなしに)戦って勝つという "野望" のもとに開発されたものです。訓練用のデータから置き碁の棋譜を除外することなど簡単にできるはずなのに、あえて置き碁を入れてある。置き碁の白(上手うわて)は少々無理筋の手も打って、棋力の差で勝とうとするものです。普通の手ばかり打っていては、上手はハンディキャップ戦に勝てません。そういう手もアルファ碁の訓練データの中にあることになります。さらに言うと、rollout policy を作るために policy networkの訓練に使った KGS とは別の有料囲碁サイトの対局データを使っている。

ニューラルネットワークの訓練データの選び方については、ディープマインド社の緻密な戦略があるのではないかと思いました。あくまで想像ですが・・・・・・。

 AI研究とは試行錯誤 

ディープマインド社の研究報告を読むと、AI研究というのは「試行錯誤の積み重ね」が非常に重要だと思いました。たとえば policy network を構成する「畳み込みニューラルネットワーク」ですが、なぜ隠れ層が12なのか、入力層が48プレーンなのはなぜなのか、説明はありません。おそらく数々の試行錯誤の上に、このようなアーキテクチャに落ち着いたのだと思います。

value network について言うと、訓練データの作り方が独特だということは上の説明だけでもよく分かります。1手だけ SL policy network を使わずに、あえて「合法手をランダムに打つ」のはなぜでしょうか。画像認識などのAI研究において、訓練データにランダムな "ノイズ" を加えることがあります。そうした方が入力データの少々の誤りやデータ間の偶然の一致に対しても判定がブレない "強い" ニューラルネットワークを構成できるからです。合法手をランダムに打つのはそれを連想させますが、囲碁の勝率判定をする value network の場合にはどのような具体的効果があるのでしょうか。数手の合法手をランダムに打ったらどうなるのか、なぜ1手なのか。これもいろいろと試した結果のように思えます。

盤面の優劣判定に value network とロールアウトを併用し、しかもλというチューニング・パラメタをいろいろと "振ってみた" のも試行錯誤です。おそらくディープマインド社は、value network だけの優劣判定で最強の囲碁プログラムを作りたかったのではないでしょうか。それでこそ、ニューラルネットワークの技術にけたディープマインドです。それが出来たなら、研究報告のタイトルどおり「ディープ・ニューラルネットワークと木検索で囲碁を習得」したと言える。しかし想像ですが、そのような value network を開発できなかったのではと思います。他のコンピュータ囲碁プログラムで一般的なロールアウトを併用せざるを得なかった。従って「ディープ・ニューラルネットワークとモンテカルロ木検索で囲碁を習得」が、より正確です。ロールアウトを使ったということは、確率的アルゴリズムには違いないのだから。

実際の対局に "最強の" RL policy network を使わなかったのも、コンピュータ囲碁プログラムとの実戦を重ねて行きついた結論でしょう。実戦に使える RL policy network を開発しようとしたが、それが出来なかったとも考えられます

もちろんAI研究だけでなく、科学の研究には試行錯誤がつきものです。特に生命科学や物理・工学系の学問ではそうです。このブログでいうと、No.39「リチウムイオン電池とノーベル賞」で書いたリチウムイオン電池の開発物語はまさにそうでした。しかし「囲碁をAIでプレーする」というのは、純粋に論理の世界です。そこに未知の生命現象とか、解明されていない物理現象とか、そういうものは一切からまない。それにもかかわらず試行錯誤の世界だとみえる。しかもその試行錯誤は、まだ途中段階のようです。そのあたりが印象的でした。

逆の見方から言うと、こういった試行錯誤を、発散しないように、常に正解につながりそうな道にガイドした研究リーダ(ディープマインドのデミス・ハサビスCEO)の存在は大きいと感じました。

 コンピュータ技術を結集 

アルファ碁が、決して突然新しいものが生まれたのではないこともよく理解できました。それはコンピュータ囲碁の歴史を調べてみると分かります。基本となっているアルゴリズムは、まずロールアウト(プレイアウトと呼ばれることが多い)です。これは1993年にアメリカのブリューグマンが発表した論文が発端です。「次の手以降をランダムなプレイで最後まで打って勝敗を判定し、次の手の有効性を判断する」という、この驚くような発想が、現代のコンピュータ囲碁の原点となりました。次にモンテカルロ木検索(MCTS)ですが、これは2006年のフランスのクローンの論文が最初です。ここにおいて、ロールアウトと木検索をどういう風に組み合わせるかという、アルゴリズムの基本が確立しました。どの手をロールアウトするかの判断にUCB(Upper Confidence Bound)を使ったのもクローンです。

ディープマインドがやったのは、そこに深層強化学習を持ち込むことでした。まず機械学習によってアマ高段者が打ちそうな手を精度よく予測できるニューラル・ネットワークを作り(= policy network)、それとロールアウトを使って盤面の優劣を計算できる別のニューラル・ネットワークを作った(= value network)。ディープマインドの深層強化学習は確かに大きなブレークスルーですが、アルファ碁の全体の枠組みは、先人の発想した技術(ロールアウトとMCTS)にのっとっていることがよく分かります。

さらに付け加えると、アルファ碁の数々のチューニングや試行錯誤とその検証は、世に出ているコンピュータ囲碁プログラムとの対戦で行なわれています。アマチュア有段者並みに強いコンピュータ囲碁プログラムがあったからこそ、アルファ碁は開発できた。人間相手に検証するのではとても開発できなかったでしょう。人間相手に戦うのは最後の最後です。

もっと言うと、No.180「アルファ碁の着手決定ロジック(1)」に書いたように、RL policy networkの開発ではオープンソースのコンピュータ囲碁プログラム・Pachiとアルファ碁を対戦させて、RL のチューニングや検証がされました。"オープンソース" がキーワードです。つまりソースコードが公開されているので、Pachiをディープマインド社のコンピュータの中に取り込み、一部を修正して、アルファ碁と自動対戦を繰り返すようなことができるわけです。こういったあたりもアルファ碁の開発に役だったと考えられます。

「畳み込みニューラルネットワークによる深層学習」は、画像認識の分野で発達してきたものです。画像認識は手書き文字の認識にはじまって、自動運転にも応用されようとしています。要するに「人間の眼と、それに関係した脳の働きを模擬する技術」です。現代のAI研究で最もホットな分野と言っていいでしょう。

コンピュータのハードウェア技術も見逃せません。研究報告によると「分散型のアルファ碁」は、複数のコンピュータの複合体の超並列処理で実行され、そCPUの数は合計1202、GPUの数は176とあります。CPU(Central Processing Unit)は通常のパソコンなどの演算LSIであり、ここで全体の制御と、ロールアウトを含むモンテカルロ木検索が実行されます。

GPU(Graphics Processing Unit)はニューラルネットワークの演算を行う部分です。ここでなぜ "Graphics" が登場するのかと言うと、GPUはコンピュータで3次元の図形画像をリアルタイムに(たとえばマウスの動きに追従して)回転させたりするときに働く演算ユニットだからです。3次元図形は、コンピュータ内部では微小な表面3角形の集合として定義されています。その数は数10万とか数100万になることも多い。その微小3角形の内部を、視線の向き、光の方向、3角形の位置から計算したグラディエーションで塗る。これを全部の3角形に行うことで、いかにもなめらかに陰影がついた3次元画像が表示されるわけです。このすべての処理を1秒間に10回以上繰り返します(でないと、なめらかに動かない)。そのためのユニットがGPUです。

つまりGPUは、比較的単純な処理を、同時平行的に、大量に、超高速に行うために開発された画像処理用LSIです。それをニューラルネットワークの計算に応用した。特に、画像認識に使われる「畳み込みニューラルネットワーク」は GPU との相性がよい。この応用は何もディープマインドだけではないのですが、もしGPUの技術がなければ「コンピュータ囲碁プログラムにニューラルネットワークを持ち込む」のは "絵に書いた餅" に終わったに違いありません。コンピュータ・ゲームやコンピュータ・グラフィックスの世界で長年培われてきた技術によってアルファ碁が成立したことは確かです。

逆の視点から言うと、このようにコンピュータ技術を結集しているということは、アルファ碁の経験から新たなコンピュータ技術が生まれてもいいわけです。たとえば上に書いたGPUですが、GPUがあったからこそアルファ碁が "絵に書いた餅" ではなくなったことは確かでしょう。しかしそのGPUでもニューラルネットワークの計算は遅い。RL policy network の計算に3ミリ秒もかかるから、RL policy network によるロールアウトを近似する value network が作られたわけです(value network の説明参照)。value network による勝率の推定は、RL policy network によるロールアウトを繰り返して勝率推定するより 15,000倍速いと報告に書かれています。

そうであれば、今より10,000倍程度速く RL policy network が計算できたとすると、value network は不要になり(ないしは補助的なものになり)、それが「最強のコンピュータ囲碁」になると考えられます。10,000倍速くするには「アルファ碁が採用した規模の "畳み込みニューラルネットワーク" を演算できる専用LSI」を開発すれば可能なのではないでしょうか。10,000倍とまではいかなくても、1000倍速く計算可能な専用LSI・数10個の並列処理でいいのかもしれない。コンピュータ囲碁のためにそんなことをする会社はないと考えるの早計です。「畳み込みニューラルネットワーク」は、画像認識の中核的なアルゴリズムです。その画像認識が超重要技術になるのが自動運転です。そしてディープマインドの親会社のグーグルは(自動車会社ではないにもかかわらず)自動運転の研究を進めていることで有名です。ひょっとしたらグーグル・ディープマインドは、そういった専用ハードウェアの開発を始めているのかもしれません。そのときに必須になるのは「畳み込みニューラルネットワーク」の動作についての深い専門知識なのです。

憶測で話を進めることには意味がありませんが、要するにアルファ碁の開発が「単に囲碁の世界に閉じたものではない」ということを言いたいわけで、それは全く正しいと思います。


画期的だが、道は遠い


アルファ碁は画期的な技術であり、AI研究のターニングポイントを越えたと思います。しかしそこを越えてみると、その先はまだまだ長いと感じました。その先とは人の「知性」と呼ばれている領域に入ることです。

No.174「ディープマインド」で、ディープマインド社のAI技術が「Atari社のビデオゲームのプレーを学習した」ことを書きました。「コンピュータ画面に表示される得点を知ることによって、ゲームのルールや遊び方を学習した」わけです。現在、ディープマインドはグーグルの子会社ですが、グーグルが買収するきっかけとなったのは「最高経営責任者のラリー・ペイジ氏が、ある種の人間性の萌芽を思わせるAIの登場に感銘を受けた」ことのようです(No.174)。2016年5月末のNHKスペシャルで、将棋の羽生 善治さんがディープマインド社を訪問する様子が出てきましたが(デミス・ハサビスCEOと羽生さんがチェスをプレーしていました)、そこでもAtari社のビデオゲームの習得の様子が解説されていました。

この話と、研究報告の題名である「Mastering the game of Go」の "マスター" とは、意味がかなり違います。アルファ碁は、2840万のKGSの盤面データと、800万の東洋囲碁の盤面データ(いずれもアマチュア囲碁プレーヤの打ったデータ)から、囲碁の戦い方を学習したわけです。Atari社のゲームの場合のように「ゲームのルールや遊び方を学習した」とはとても言えない。その意味で「Nature ダイジェスト 2016年3月号」の記事(上に引用)にあった「Atari社のゲームの習得と囲碁の習得を同一視するような書き方」は間違いだし、少なくとも大きな誤解を招く言い方です。

画期的な成果だが、まだ道は遠い。そのことはディープマインドのCEOであるデミス・ハサビス氏が一番実感していることでしょう。どこかのインタビューで、彼はそういう発言をしていたと記憶しています。


人の知性のすばらしさ


実は、ディープマインド社の研究報告を読んで一番感じたのは、アルファ碁と対戦できるプロ棋士の「知力」の素晴らしさでした。ここまでやっているコンピュータ囲碁プログラムと「戦える」こと自体が驚きというのが率直な感想です。相手はプロセッサーを1400個近くも並列処理させる、超高速コンピュータです。その相手に勝てることもある(2016年3月のイ・セドル 九段の一勝)

人間の知性や知力の奥深さはすごいし、その秘密を解明するにしても、まだまだ先は遠いと思いました。


欧米に囲碁を広める努力をしたのは・・・・・・


これからは余談です。このディープマインド社の研究報告を読んでみようという気になったのは、アルファ碁とイ・セドル 九段の対決がきっかけでした。その対局のネット解説(マイケル・レドモンド 九段)を見ていて思ったのですが、英語の囲碁用語には日本語がいろいろとあるのですね。aji(アジ、味)とかdamezumari(ダメ詰まり)とかです。普段、英語の囲碁用語に接する機会などないので、これは新しい発見でした。

ディープマインド社の研究報告にも、atari(アタリ、当たり)とか nakade(ナカデ、中手)とか dan(段)とか komi(コミ)とか、いろいろ出てきます。最も驚いたのは byoyomiです。「持ち時間を使い切ったら一手30秒の秒読み」と言うときの「秒読み」です。世界トップクラスのイギリスの科学誌「Nature」に byoyomi(= 日本語)が出てくるのです。日本語について言うと、No.174 にも書きましたが、そもそも英語で囲碁を示す Go(AlphaGo の Go)が「碁」の日本語発音です。

囲碁の発祥地は中国です。しかし、囲碁英語に日本語がたくさんあるという事実は、欧米に囲碁を広めたのは日本人棋士、ないしは日本で囲碁を学んだ欧米人だということを如実に示しています。欧米に囲碁が広まったのはその人たちの功績だった。日本のプロ棋士では、特に岩本薫・元本因坊です。

そうして広まってくると、欧米でも囲碁の深淵さが理解されるようになり、コンピュータ囲碁プログラムを開発する人が欧米に現れた。それがAI研究者のチャレンジ意欲をかき立て、そして英国・ロンドンでアルファ碁が誕生した・・・・・・。

欧米に囲碁を広めた人たちの努力(日本人プロ棋士、欧米人を含む)

欧米で囲碁が普及

コンピュータ囲碁プログラムの出現(欧米で)

AI研究者が囲碁に挑戦

ディープマインド社とアルファ碁の出現

というのは、一本の線で繋がっているのではないでしょうか。これは決して「風が吹いたら桶屋が儲かる」式の話ではなく、ロジカルな繋がりだと思うのです。

ディープマインド社はアルファ碁の開発で得られた知見を社会問題や産業分野に応用しようとしています。そのルーツをたどると、一つとして「日本のプロ棋士、ないしは日本で囲碁を学んだ人たちが、欧米に囲碁を普及させた努力」がある。そう考えられると思いました。



 補記:AlphaGo Zero 

AlphaGo を開発した DeepMind は、2017年10月に AlphaGo Zero を発表しました。このシステムに組み込まれた知識は「囲碁のルール」でだけです。つまり、

① 人間の対局データ(棋譜)を使っていない
② 囲碁の常識(いわゆる "ドメイン知識")も使っていない

システムです。にもかかわらず、AlphaGo 及びそれ以降に作られた改良版のすべてを凌駕する強さです。

本文中に、AlphaGo が高段者の棋譜やドメイン知識を利用していることを念頭に「画期的だが、道は遠い」と書きましたが、道は遠いどころか、ゴールは間近にあったわけで、「遠い」という推測は全くのハズレでした。このことの教訓は、

AI 技術の進歩は急激であり、いつなんどき驚くような技術が現れるかわからない

ということです。現状の技術内容だけから安易な判断は慎むべきだと思いました。




nice!(0)  トラックバック(0)